コード例 #1
0
ファイル: code.py プロジェクト: shibaji7/DA2Final
def __kernel_regress(fn, X, y, x):
    if fn == 0: kernel = C(1.0, (1e-3, 1e3)) * RBF(1, (1e-2, 1e2))
    elif fn == 1: kernel = C(1.0, (1e-3, 1e3)) * RQ(length_scale=5.0, alpha=5.0, length_scale_bounds=(1e-02, 1e2), alpha_bounds=(1e-02, 1e2))
    gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9)
    gp.fit(X, y)
    y_pred, sigma = gp.predict(x, return_std=True)
    return y_pred[:,0], sigma
コード例 #2
0
 def opt_gp(self):
     self.nrst = 10
     self.kernel = RQ(length_scale=1.0,
                      alpha=0.1,
                      length_scale_bounds=(1e-02, 1e2),
                      alpha_bounds=(1e-2, 1e2))
     self.gp = GaussianProcessRegressor(kernel=self.kernel,
                                        n_restarts_optimizer=self.nrst)
     return
コード例 #3
0
def get_gpr(kernel_type, hyp, nrst=10, trw=27):
    if kernel_type == "RBF":
        kernel = RBF(length_scale=hyp["l"], length_scale_bounds=(1e-02, 1e2))
    if kernel_type == "RQ":
        kernel = RQ(length_scale=hyp["l"],
                    alpha=hyp["a"],
                    length_scale_bounds=(1e-02, 1e2),
                    alpha_bounds=(1e-2, 1e2))
    if kernel_type == "Matern":
        kernel = Matern(length_scale=hyp["l"],
                        length_scale_bounds=(1e-02, 1e2),
                        nu=1.4)
    gpr = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=nrst)
    return (gpr, "GPR", trw)
コード例 #4
0
 def ini(self):
     self.nrst = 10
     if self.k_type == "RBF":
         self.kernel = RBF(length_scale=1.0,
                           length_scale_bounds=(1e-02, 1e2))
     if self.k_type == "RQ":
         self.kernel = RQ(length_scale=1.0,
                          alpha=0.1,
                          length_scale_bounds=(1e-02, 1e2),
                          alpha_bounds=(1e-2, 1e2))
     if self.k_type == "Matern":
         self.kernel = Matern(length_scale=1.0,
                              length_scale_bounds=(1e-02, 1e2),
                              nu=1.4)
     return
コード例 #5
0
    def constructModel(self):
        optimizedHyperParameters = self.optimizedHyperParameters
        fixedHyperParameters = self.fixedHyperParameters

        kernelName = optimizedHyperParameters["kernelName"]

        if kernelName == 'RBF':
            kernel = C(1.0, (1e-5, 1e5)) * RBF(1.0, (1e-5, 1e5))
        elif kernelName == 'Matern':
            kernel = M(1.0, (1e-5, 1e5), nu=1.5)
        elif kernelName == 'RationalQuadratic':
            kernel = RQ(1.0, 1.0, (1e-5, 1e5), (1e-5, 1e5))

        model = GaussianProcessRegressor(kernel=kernel)

        self.model = model
コード例 #6
0
while (n_out > 0 or final_fit==0) and num_finite >= 2:

    beta1, beta0, incert_slope, _, _ = ft.wls_matrix(time_vals[good_vals], data_vals[good_vals],
                                                     1. / err_vals[good_vals], conf_slope=0.99)

    # standardized dispersion from linearity
    res_stdized = np.sqrt(np.mean(
        (data_vals[good_vals] - (beta0 + beta1 * time_vals[good_vals])) ** 2 / err_vals[good_vals]))
    res = np.sqrt(np.mean((data_vals[good_vals] - (beta0 + beta1 * time_vals[good_vals])) ** 2))
    if perc_nonlin[min(niter, len(perc_nonlin) - 1)] == 0:
        opt_var = 0
    else:
        opt_var = (res / res_stdized ** 2) ** 2 * 100. / (5 * perc_nonlin[min(niter, len(perc_nonlin) - 1)])

    k1 = PairwiseKernel(1, metric='linear') + PairwiseKernel(1, metric='linear') * C(opt_var) * RQ(10, 3)  # linear kernel
    k2 = C(30) * ESS(length_scale=1, periodicity=1)  # periodic kernel
    k3 = C(50) * RBF(0.75)
    kernel = k1 + k2 + k3

    mu_x = np.nanmean(time_vals[good_vals])
    detr_t_pred = t_pred - mu_x
    detr_time_vals = time_vals - mu_x
    mu_y = np.nanmean(data_vals)
    detr_data_vals = data_vals - mu_y

    # if we remove a linear trend, normalize_y should be false...
    gp = GaussianProcessRegressor(kernel=kernel, optimizer=optimizer, n_restarts_optimizer=n_restarts_optimizer,
                                  alpha=err_vals[good_vals], normalize_y=False)
    gp.fit(detr_time_vals[good_vals].reshape(-1, 1), detr_data_vals[good_vals].reshape(-1, 1))
    y_pred, sigma = gp.predict(detr_t_pred.reshape(-1, 1), return_std=True)
コード例 #7
0
    def fit_tile(tile, tmp_ref_dir, base_dir, out_dir):

        method = 'gpr'
        subspat = None
        ref_dem_date = np.datetime64('2013-01-01')
        gla_mask = '/calcul/santo/hugonnet/outlines/rgi60_merge.shp'
        inc_mask = '/calcul/santo/hugonnet/outlines/rgi60_buff_10.shp'
        write_filt = True
        clobber = True
        tstep = 1. / 12.
        time_filt_thresh = [-50, 50]
        opt_gpr = False
        filt_ref = 'both'
        filt_ls = False
        conf_filt_ls = 0.99
        # specify the exact temporal extent needed to be able to merge neighbouring stacks properly
        tlim = [np.datetime64('2000-01-01'), np.datetime64('2020-01-01')]

        #for sensitivity test: force final fit only, and change kernel parameters in entry of script
        force_final_fit = True
        k1 = PairwiseKernel(1, metric='linear')  # linear kernel
        k2 = C(period_var) * ESS(length_scale=1,
                                 periodicity=1)  # periodic kernel
        k3 = C(base_var * 0.6) * RBF(base_length * 0.75) + C(
            base_var * 0.3) * RBF(base_length * 1.5) + C(base_var * 0.1) * RBF(
                base_length * 3)
        k4 = PairwiseKernel(1, metric='linear') * C(nonlin_var) * RQ(
            nonlin_length, nonlin_alpha)
        kernel = k1 + k2 + k3 + k4

        lat, lon = SRTMGL1_naming_to_latlon(tile)
        epsg, utm = latlon_to_UTM(lat, lon)
        print('Fitting tile: ' + tile + ' in UTM zone ' + utm)

        # reference DEM
        ref_utm_dir = os.path.join(tmp_ref_dir, utm)
        ref_vrt = os.path.join(ref_utm_dir, 'tmp_' + utm + '.vrt')
        infile = os.path.join(base_dir, utm, tile + '.nc')
        outfile = os.path.join(out_dir, utm, tile + '_final.nc')

        fn_filt = os.path.join(base_dir, utm, tile + '_filtered.nc')

        if True:  #not os.path.exists(outfile):
            ft.fit_stack(infile,
                         fn_filt=fn_filt,
                         fit_extent=subspat,
                         fn_ref_dem=ref_vrt,
                         ref_dem_date=ref_dem_date,
                         exc_mask=gla_mask,
                         tstep=tstep,
                         tlim=tlim,
                         inc_mask=inc_mask,
                         filt_ref=filt_ref,
                         time_filt_thresh=time_filt_thresh,
                         write_filt=True,
                         outfile=outfile,
                         method=method,
                         filt_ls=filt_ls,
                         conf_filt_ls=conf_filt_ls,
                         nproc=nproc,
                         clobber=True,
                         kernel=kernel,
                         force_final_fit=force_final_fit)

            # write dh/dts for visualisation
            ds = xr.open_dataset(outfile)

            t0 = np.datetime64('2000-01-01')
            t1 = np.datetime64('2020-01-01')

            ft.get_full_dh(ds,
                           os.path.join(
                               os.path.dirname(outfile),
                               os.path.splitext(os.path.basename(outfile))[0]),
                           t0=t0,
                           t1=t1)

        else:
            print('Tile already processed.')
コード例 #8
0
            if diff - diff_std >0:
                base_var = 50 + (diff-diff_std)**2/2
            else:
                base_var = 50.
        else:
            base_var = 50.
    else:
        nonlin_var = (res / res_stdized) ** 2
        # nonlin_var = 1
        period_nonlinear = 100. / res_stdized ** 2
        # period_nonlinear = 10.
        base_var=50

    print(base_var)

    k1 = PairwiseKernel(1, metric='linear') + PairwiseKernel(1, metric='linear') * C(nonlin_var) * RQ(10, period_nonlinear)  # linear kernel
    k2 = C(30) * ESS(length_scale=1, periodicity=1)  # periodic kernel
    k3 = C(base_var) * RBF(1.5)
    kernel = k1 + k2 + k3

    mu_x = np.nanmean(time_vals[good_vals])
    detr_t_pred = t_pred - mu_x
    detr_time_vals = time_vals - mu_x
    mu_y = np.nanmean(data_vals)
    detr_data_vals = data_vals - mu_y

    # if we remove a linear trend, normalize_y should be false...
    gp = GaussianProcessRegressor(kernel=kernel, optimizer=optimizer, n_restarts_optimizer=n_restarts_optimizer,
                                  alpha=err_vals[good_vals], normalize_y=False)
    gp.fit(detr_time_vals[good_vals].reshape(-1, 1), detr_data_vals[good_vals].reshape(-1, 1))
    y_pred, sigma = gp.predict(detr_t_pred.reshape(-1, 1), return_std=True)
コード例 #9
0
        tmp_x = [data[i][j] for j in features]
        X.append(tmp_x)
        Y0.append(data[i][targets[0]])
        Y1.append(data[i][targets[1]])
        Y2.append(data[i][targets[2]])
        Y3.append(data[i][targets[3]])

# finishing pasing data, now start testing

# Instanciate a Gaussian Process model
#kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2))
#gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=10)
# TESTIND DIFFERENT KERNELS
printMSE = True
printDetails = False
kernels = [RBF(), MA(), RQ(), RQ(length_scale=50)]
for kernel in kernels:
    print kernel
    gp = GaussianProcessRegressor(kernel)  #n_restarts_optimizer)

    clf = gp

    print "variable number 1: " + targets[0]
    scores = cross_val_score(clf, X, Y0, cv=5, scoring='r2')
    if printDetails:
        print scores
    print "R2: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)
    if printMSE:
        scores = cross_val_score(clf,
                                 X,
                                 Y0,
コード例 #10
0
xTrain, yTrain = readTrainFile("Data/problem4b_train.csv")
xTest = readTestFile("Data/problem4b_test.csv")
yTest = readSolutionFile("Data/problem4b_sol.csv")

xTrain = np.atleast_2d(xTrain)
xTest = np.atleast_2d(xTest)

C1 = C(1.0, (1e-3, 1e3))
C2 = C(0.5, (1e-3, 1e3))
RBF1 = RBF(10, (1e-2, 1e2))
RBF2 = RBF(5, (1e-2, 1e2))
RBF3 = RBF(2, (1e-2, 1e2))
RBF4 = RBF(1, (1e-2, 1e2))
RBF5 = RBF(0.5, (1e-2, 1e2))
RQ1 = RQ(10, 0.5, (1e-2, 1e2))
ESS1 = ESS(1.0, 1.0, (1e-05, 100000.0), (1e-05, 100000.0))

kernel1 = C1 * RBF1 + C2
kernel2 = C1 * RBF1 * RBF2 * RBF3 * RBF4 + RBF5
kernel3 = C1 * RQ1 + RBF2
kernel4 = C1 * ESS1 + RBF2

GP = []
for ndx, kernel in zip([1, 2, 3, 4], [kernel1, kernel2, kernel3, kernel4]):
    t = time.time()
    print(
        '---------------------------------------------------------------------------'
    )
    print(datetime.datetime.now())
    print(f'time - {t} :: Fitting GP for kernel - {ndx}')
コード例 #11
0
plt.show()

# 数据归一化
data = (data - np.min(data)) / (np.max(data) - np.min(data))
ptr, ttr, pte, tte = split_data(data, n)
ptr = np.fliplr(ptr)
pte = np.fliplr(pte)

best_pop = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
p_tr, p_te = translateDNA(best_pop, ptr, pte)
# svr
clf = svm.SVR()
clf.fit(p_tr, ttr)
result_svm = clf.predict(p_te)
#gpr
kernel = RQ(1.0, 1.0, (1e-5, 1e5), (1e-5, 1e5))
reg = GaussianProcessRegressor(kernel=kernel)
reg.fit(p_tr, ttr)  #这是拟合高斯过程回归的步骤
result_gpr = reg.predict(p_te)

#elm
Weights, biases, w_out, TF, TYPE = elm.fit(p_tr, ttr)
result_elm = elm.predict(p_te, Weights, biases, w_out, TF, TYPE)

plt.figure()
plt.plot(tte, c='r', label='true')
plt.plot(result_svm, c='g', label='svr')
plt.plot(result_elm, c='y', label='elm')
plt.plot(result_gpr, c='b', label='gpr')

plt.legend()
コード例 #12
0
ファイル: analysis.py プロジェクト: brettrhenderson/pybec
def interp_3d(coord_arr,
              val_arr,
              resolution=100j,
              lattice=None,
              xlim=(0, 1),
              ylim=(0, 1),
              zlim=(0, 1),
              method='linear',
              return_grids=False):
    if lattice is None:
        min_x, max_x = xlim
        min_y, max_y = ylim
        min_z, max_z = zlim
    else:
        # get the limits of the lattice along the slice direction
        x_lat = lattice[:, 0]
        y_lat = lattice[:, 1]
        z_lat = lattice[:, 2]

        # for plotting xlim and ylim
        min_x, max_x = min(x_lat), max(x_lat)
        min_y, max_y = min(y_lat), max(y_lat)
        min_z, max_z = min(z_lat), max(z_lat)

    x, y, z = coord_arr[:, 0], coord_arr[:, 1], coord_arr[:, 2]
    points = np.array(list(zip(x, y, z)))

    # grid on which to evaluate interpolators
    grid_x, grid_y, grid_z = np.mgrid[min_x:max_x:resolution * 1j,
                                      min_y:max_y:resolution * 1j,
                                      min_z:max_z:resolution * 1j]

    if method == 'kriging':
        uk3d = UniversalKriging3D(x,
                                  y,
                                  z,
                                  val_arr,
                                  variogram_model='spherical',
                                  nlags=10,
                                  enable_plotting=False,
                                  drift_terms=['regional_linear'],
                                  verbose=False)
        gridx = np.linspace(min_x, max_x, resolution)
        gridy = np.linspace(min_y, max_y, resolution)
        gridz = np.linspace(min_z, max_z, resolution)
        preds, uk_ss3d = uk3d.execute('grid', gridx, gridy, gridz)
        preds = preds.data

    elif method == 'gp':
        kernel = C(1.0, (1e-3, 1e3)) * RQ(2.0, 1.0, (1e-1, 2e1), (1e-3, 1e3))
        gp = GaussianProcessRegressor(kernel=kernel,
                                      n_restarts_optimizer=10,
                                      alpha=1e-10)
        gp.fit(points, val_arr)
        preds = gp.predict(
            np.array(list(zip(grid_x.ravel(), grid_y.ravel(),
                              grid_z.ravel())))).reshape(
                                  resolution, resolution, resolution)
    elif method == 'rbf':
        rbfi = Rbf(x, y, z, val_arr)
        preds = rbfi(grid_x, grid_y, grid_z)
    elif method == 'linear':
        lndi = LND(points, val_arr)
        preds = lndi(grid_x, grid_y, grid_z)
    elif method == 'nearest':
        nndi = NND(points, val_arr)
        preds = nndi(grid_x, grid_y, grid_z)

    if return_grids:
        return preds, grid_x, grid_y, grid_z
    else:
        return preds
コード例 #13
0
import matplotlib.pyplot as plt
import pandas as pd
#Scikit Gaussian Process functions
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import PairwiseKernel, RBF, Product, ConstantKernel as C, RationalQuadratic as RQ, Matern, WhiteKernel
#Scikit MultiOutput Regression class - not needed in the current version
#from sklearn.multioutput import MultiOutputRegressor
sn_lc = pd.read_csv("Users/bhagyasubrayan/Desktop/ZTF/ZTF18abbpeqo.r.txt", sep=" ",
                    header = 0, names = ['Date','Band','Magnitude','Mag_Error'])
#snlc = sn_lc[['Date','Magnitude','Mag_Error']].to_numpy()
#print(snlc)
x = sn_lc['Date'][:,np.newaxis]
y = sn_lc['Magnitude'][:,np.newaxis]
#print(x)
#print(y)
y_true_stdev = np.std(y)
kern = y_true_stdev*y_true_stdev*RQ(length_scale = 10)*RQ(length_scale = 10)
gp = GaussianProcessRegressor(kernel=kern).fit(x,y)
x_test = (sn_lc['Date'].max() - sn_lc['Date'].min()) * np.random.random_sample((1000,)) + sn_lc['Date'].min()
print(x_test)
y_mean, y_stdev = gp.predict(x_test[:,np.newaxis], return_std = True)
print(y_mean[:,0])
plt.errorbar(x, y, sn_lc['Mag_Error'][:,np.newaxis], fmt='o')
plt.gca().invert_yaxis()
plt.show()
results = np.array([x_test,y_mean[:,0]])
print(results)
plt.errorbar(results[0],results[1],y_stdev, fmt='o')
plt.gca().invert_yaxis()
plt.show()
コード例 #14
0
 def constructModel(self):
     kernel = RQ(1.0, 1.0, (1e-5, 1e5), (1e-5, 1e5))
     self.recurrentModel = GaussianProcessRegressor(kernel=kernel)
コード例 #15
0
    res_stdized = np.sqrt(
        np.mean(
            (data_vals[good_vals] -
             (beta0 + beta1 * time_vals[good_vals]))**2 / err_vals[good_vals]))
    res = np.sqrt(
        np.mean((data_vals[good_vals] -
                 (beta0 + beta1 * time_vals[good_vals]))**2))
    if perc_nonlin[min(niter, len(perc_nonlin) - 1)] == 0:
        opt_var = 0
    else:
        opt_var = (res / res_stdized**2)**2 * 100. / (
            5 * perc_nonlin[min(niter,
                                len(perc_nonlin) - 1)])

    k1 = PairwiseKernel(1, metric='linear') + PairwiseKernel(
        1, metric='linear') * C(opt_var) * RQ(10, 3)  # linear kernel
    k2 = C(30) * ESS(length_scale=1, periodicity=1)  # periodic kernel
    k3 = C(50) * RBF(0.75)
    kernel = k1 + k2 + k3

    mu_x = np.nanmean(time_vals[good_vals])
    detr_t_pred = t_pred - mu_x
    detr_time_vals = time_vals - mu_x
    mu_y = np.nanmean(data_vals)
    detr_data_vals = data_vals - mu_y

    # if we remove a linear trend, normalize_y should be false...
    gp = GaussianProcessRegressor(kernel=kernel,
                                  optimizer=optimizer,
                                  n_restarts_optimizer=n_restarts_optimizer,
                                  alpha=err_vals[good_vals],