def test_enet_toy_list_input(): """Test ElasticNet for various values of alpha and l1_ratio with list X""" X = np.array([[-1], [0], [1]]) X = sp.csc_matrix(X) Y = [-1, 0, 1] # just a straight line T = np.array([[2], [3], [4]]) # test sample # this should be the same as unregularized least squares clf = ElasticNet(alpha=0, l1_ratio=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0)
def test_enet_toy(): """ Test ElasticNet for various parameters of alpha and l1_ratio. Actually, the parameters alpha = 0 should not be allowed. However, we test it as a border case. ElasticNet is tested with and without precomputed Gram matrix """ X = np.array([[-1.], [0.], [1.]]) Y = [-1, 0, 1] # just a straight line T = [[2.], [3.], [4.]] # test sample # this should be the same as lasso clf = ElasticNet(alpha=1e-8, l1_ratio=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100, precompute=False) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=True) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=np.dot(X.T, X)) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0)
def test_same_multiple_output_sparse_dense(): for normalize in [True, False]: l = ElasticNet(normalize=normalize) X = [[0, 1, 2, 3, 4], [0, 2, 5, 8, 11], [9, 10, 11, 12, 13], [10, 11, 12, 13, 14]] y = [[1, 2, 3, 4, 5], [1, 3, 6, 9, 12], [10, 11, 12, 13, 14], [11, 12, 13, 14, 15]] ignore_warnings(l.fit)(X, y) sample = np.array([1, 2, 3, 4, 5]).reshape(1, -1) predict_dense = l.predict(sample) l_sp = ElasticNet(normalize=normalize) X_sp = sp.coo_matrix(X) ignore_warnings(l_sp.fit)(X_sp, y) sample_sparse = sp.coo_matrix(sample) predict_sparse = l_sp.predict(sample_sparse) assert_array_almost_equal(predict_sparse, predict_dense)
def test_enet_small(): """Toy tests with generated X and Y""" # TODO: add \theta prior knowledge here and test the output X = np.array([[-1.], [0.], [1.]]) Y = [-1, 0, 1] # a straight line T = [[2.], [3.], [4.]] # test sample # this should be the same as lasso clf = ElasticNet(alpha=1e-8, l1_ratio=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100, precompute=False) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=True) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=np.dot(X.T, X)) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0)
def test_enet_toy_explicit_sparse_input(): """Test ElasticNet for various values of alpha and l1_ratio with sparse X""" # training samples X = sp.lil_matrix((3, 1)) X[0, 0] = -1 # X[1, 0] = 0 X[2, 0] = 1 Y = [-1, 0, 1] # just a straight line (the identity function) # test samples T = sp.lil_matrix((3, 1)) T[0, 0] = 2 T[1, 0] = 3 T[2, 0] = 4 # this should be the same as lasso clf = ElasticNet(alpha=0, l1_ratio=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0)
def test_enet_toy_explicit_sparse_input(): # Test ElasticNet for various values of alpha and l1_ratio with sparse X f = ignore_warnings # training samples X = sp.lil_matrix((3, 1)) X[0, 0] = -1 # X[1, 0] = 0 X[2, 0] = 1 Y = [-1, 0, 1] # just a straight line (the identity function) # test samples T = sp.lil_matrix((3, 1)) T[0, 0] = 2 T[1, 0] = 3 T[2, 0] = 4 # this should be the same as lasso clf = ElasticNet(alpha=0, l1_ratio=1.0) f(clf.fit)(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=1000) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0)
def test_fit_simple_backupsklearn(): df = pd.read_csv("./open_data/simple.txt", delim_whitespace=True) X = np.array(df.iloc[:, :df.shape[1] - 1], dtype='float32', order='C') y = np.array(df.iloc[:, df.shape[1] - 1], dtype='float32', order='C') Solver = h2o4gpu.ElasticNet enet = Solver(glm_stop_early=False) print("h2o4gpu fit()") enet.fit(X, y) print("h2o4gpu predict()") print(enet.predict(X)) print("h2o4gpu score()") print(enet.score(X,y)) enet_wrapper = Solver(positive=True, random_state=1234) print("h2o4gpu scikit wrapper fit()") enet_wrapper.fit(X, y) print("h2o4gpu scikit wrapper predict()") print(enet_wrapper.predict(X)) print("h2o4gpu scikit wrapper score()") print(enet_wrapper.score(X, y)) from sklearn.linear_model.coordinate_descent import ElasticNet enet_sk = ElasticNet(positive=True, random_state=1234) print("Scikit fit()") enet_sk.fit(X, y) print("Scikit predict()") print(enet_sk.predict(X)) print("Scikit score()") print(enet_sk.score(X, y)) enet_sk_coef = csr_matrix(enet_sk.coef_, dtype=np.float32).toarray() print(enet_sk.coef_) print(enet_sk_coef) print(enet_wrapper.coef_) print(enet_sk.intercept_) print(enet_wrapper.intercept_) print(enet_sk.n_iter_) print(enet_wrapper.n_iter_) print("Coeffs, intercept, and n_iters should match") assert np.allclose(enet_wrapper.coef_, enet_sk_coef) assert np.allclose(enet_wrapper.intercept_, enet_sk.intercept_)
def test_fit_simple_backupsklearn(): df = pd.read_csv("./open_data/simple.txt", delim_whitespace=True) X = np.array(df.iloc[:, :df.shape[1] - 1], dtype='float32', order='C') y = np.array(df.iloc[:, df.shape[1] - 1], dtype='float32', order='C') Solver = h2o4gpu.ElasticNet enet = Solver(glm_stop_early=False) print("h2o4gpu fit()") enet.fit(X, y) print("h2o4gpu predict()") print(enet.predict(X)) print("h2o4gpu score()") print(enet.score(X, y)) enet_wrapper = Solver(positive=True, random_state=1234) print("h2o4gpu scikit wrapper fit()") enet_wrapper.fit(X, y) print("h2o4gpu scikit wrapper predict()") print(enet_wrapper.predict(X)) print("h2o4gpu scikit wrapper score()") print(enet_wrapper.score(X, y)) from sklearn.linear_model.coordinate_descent import ElasticNet enet_sk = ElasticNet(positive=True, random_state=1234) print("Scikit fit()") enet_sk.fit(X, y) print("Scikit predict()") print(enet_sk.predict(X)) print("Scikit score()") print(enet_sk.score(X, y)) enet_sk_coef = csr_matrix(enet_sk.coef_, dtype=np.float32).toarray() print(enet_sk.coef_) print(enet_sk_coef) print(enet_wrapper.coef_) print(enet_sk.intercept_) print(enet_wrapper.intercept_) print(enet_sk.n_iter_) print(enet_wrapper.n_iter_) print("Coeffs, intercept, and n_iters should match") assert np.allclose(enet_wrapper.coef_, enet_sk_coef) assert np.allclose(enet_wrapper.intercept_, enet_sk.intercept_)
class ElasticNetImpl(): def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic'): self._hyperparams = { 'alpha': alpha, 'l1_ratio': l1_ratio, 'fit_intercept': fit_intercept, 'normalize': normalize, 'precompute': precompute, 'max_iter': max_iter, 'copy_X': copy_X, 'tol': tol, 'warm_start': warm_start, 'positive': positive, 'random_state': random_state, 'selection': selection } self._wrapped_model = SKLModel(**self._hyperparams) def fit(self, X, y=None): if (y is not None): self._wrapped_model.fit(X, y) else: self._wrapped_model.fit(X) return self def predict(self, X): return self._wrapped_model.predict(X)
print X_train[123, :] ''' norm1 = np.linalg.norm(y_train) if norm1 != 0: y_train, y_test = y_train/norm1, y_test/norm1 print norm1 ''' print y_train.shape model = SVR(C=1.0, gamma=1.0) model = LinearRegression() lasso = Lasso(alpha=0.1).fit(X_train, y_train) enet = ElasticNet(alpha=0.1, l1_ratio=0.7).fit(X_train, y_train) y_pred = lasso.predict(X_test) print "MSE", mean_squared_error(y_test, y_pred) m = np.mean(y_test) print "MSE (Mean)", mean_squared_error(y_test, m * np.ones(len(y_test))) print "r^2 on test data", r2_score(y_test, y_pred) plt.plot(enet.coef_, label='Elastic net coefficients') plt.plot(lasso.coef_, label='Lasso coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score( y_test, lasso.predict(X_test)), r2_score(y_test, enet.predict(X_test)))) plt.show()
''' norm1 = np.linalg.norm(y_train) if norm1 != 0: y_train, y_test = y_train/norm1, y_test/norm1 print norm1 ''' print y_train.shape model = SVR(C=1.0, gamma=1.0) model = LinearRegression() lasso = Lasso(alpha=0.1).fit(X_train, y_train) enet = ElasticNet(alpha=0.1, l1_ratio=0.7).fit(X_train, y_train) y_pred = lasso.predict(X_test) print "MSE", mean_squared_error(y_test, y_pred) m = np.mean(y_test) print "MSE (Mean)",mean_squared_error(y_test, m*np.ones(len(y_test))) print "r^2 on test data", r2_score(y_test, y_pred) plt.plot(enet.coef_, label='Elastic net coefficients') plt.plot(lasso.coef_, label='Lasso coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score(y_test, lasso.predict(X_test)), r2_score(y_test, enet.predict(X_test)))) plt.show()