def _wrapper(self, coef, intercept, loss_function, penalty_type, alpha, C, l1_ratio, dataset, n_iter, fit_intercept, verbose, shuffle, seed, pos_weight, neg_weight, learning_rate_type, eta0, power_t, t_, intercept_decay, coefArray, interceptArray, i): print("Start %s" % i) coef, intercept = plain_sgd(coef, intercept, loss_function, penalty_type, alpha, C, l1_ratio, dataset, n_iter, int(fit_intercept), int(verbose), int(shuffle), seed, pos_weight, neg_weight, learning_rate_type, eta0, power_t, t_, intercept_decay) print(coef, intercept) coefArray[i] = int(coef[0]) coefArray[i + 10] = int(coef[1]) coefArray[i + 20] = int(coef[2]) interceptArray[i] = int(intercept) print("End %s" % i)
def _wrapper(self,coef, intercept, loss_function, penalty_type, alpha, C, l1_ratio, dataset, n_iter, fit_intercept, verbose, shuffle, seed, pos_weight, neg_weight, learning_rate_type, eta0, power_t, t_, intercept_decay,coefArray,interceptArray,i): print("Start %s"%i) coef,intercept = plain_sgd(coef, intercept, loss_function, penalty_type, alpha, C, l1_ratio, dataset, n_iter, int(fit_intercept), int(verbose), int(shuffle), seed, pos_weight, neg_weight, learning_rate_type, eta0, power_t, t_, intercept_decay) print(coef, intercept) coefArray[i] = int(coef[0]) coefArray[i+10] =int(coef[1]) coefArray[i+20] =int(coef[2]) interceptArray[i] = int(intercept) print("End %s"%i)
def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, n_iter): dataset, intercept_decay = make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if self.t_ is None: self.t_ = 1.0 random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if self.average > 0: self.standard_coef_, self.standard_intercept_, \ self.average_coef_, self.average_intercept_ =\ average_sgd(self.standard_coef_, self.standard_intercept_[0], self.average_coef_, self.average_intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.average_intercept_ = np.atleast_1d(self.average_intercept_) self.standard_intercept_ = np.atleast_1d(self.standard_intercept_) self.t_ += n_iter * X.shape[0] if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.intercept_ = self.standard_intercept_ else: self.coef_, self.intercept_ = \ plain_sgd(self.coef_, self.intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay) self.t_ += n_iter * X.shape[0] self.intercept_ = np.atleast_1d(self.intercept_)