def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert omp.coef_.shape == (n_features, ) assert omp.intercept_.shape == () assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs omp.fit(X, y) assert omp.coef_.shape == (n_targets, n_features) assert omp.intercept_.shape == (n_targets, ) assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs coef_normalized = omp.coef_[0].copy() omp.set_params(fit_intercept=True, normalize=False) omp.fit(X, y[:, 0]) assert_array_almost_equal(coef_normalized, omp.coef_) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs assert omp.coef_.shape == (n_features, ) assert omp.intercept_ == 0 omp.fit(X, y) assert omp.coef_.shape == (n_targets, n_features) assert omp.intercept_ == 0 assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs
def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_.shape, ()) assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets,)) assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs coef_normalized = omp.coef_[0].copy() omp.set_params(fit_intercept=True, normalize=False) omp.fit(X, y[:, 0]) assert_array_almost_equal(coef_normalized, omp.coef_) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert np.count_nonzero(omp.coef_) <= n_nonzero_coefs assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_, 0) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs
def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features, )) assert_equal(omp.intercept_.shape, ()) assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets, )) assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) omp.set_params(fit_intercept=False, normalize=False) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') omp.fit(X, y[:, 0], Gram=G, Xy=Xy[:, 0]) assert_equal(omp.coef_.shape, (n_features, )) assert_equal(omp.intercept_, 0) assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs) assert_true(len(w) == 2) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') omp.fit(X, y, Gram=G, Xy=Xy) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) assert_true(len(w) == 2)
def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_.shape, ()) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets,)) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)
def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_.shape, ()) assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets,)) assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) omp.set_params(fit_intercept=False, normalize=False) assert_warns(DeprecationWarning, omp.fit, X, y[:, 0], Gram=G, Xy=Xy[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_, 0) assert_true(count_nonzero(omp.coef_) <= n_nonzero_coefs) assert_warns(DeprecationWarning, omp.fit, X, y, Gram=G, Xy=Xy) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert_true(count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)
def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features, )) assert_equal(omp.intercept_.shape, ()) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets, )) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features, )) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs)