コード例 #1
0
            def embedf(dist_mat):
                embedding, stress = manifold.smacof(dist_mat,
                                                    metric=False,
                                                    n_components=3,
                                                    max_iter=500)

                return embedding
コード例 #2
0
ファイル: mds_tree.py プロジェクト: valainis/cytoskel1
    def __init__(self,
                 df_avg,
                 df_seg0,
                 icells,
                 edges,
                 init=None,
                 seed=137,
                 xfac=1.0):
        map0, rmap0 = mk_maps(df_avg, icells)
        edges_0 = rmap0[edges]

        self.e0 = edges_0[:, 0]
        self.e1 = edges_0[:, 1]

        X = df_seg0.loc[icells, :].values
        dist = euclidean_distances(X)

        if init is None:
            np.random.seed(seed)

        #n_init should not be 1 for random seed case
        ux2, stress, n_iter = smacof(dist,
                                     init=init,
                                     n_init=1,
                                     return_n_iter=True)
        ux2[:, 0] = xfac * ux2[:, 0]

        segs = ux2[edges_0]
        segs0 = np.mean(segs, axis=1, keepdims=True)
        dsegs = segs - segs0
        segs = .95 * dsegs + segs0

        self.df_avg = df_avg
        self.ux2 = ux2
        self.segs = segs
        self.edges_0 = edges_0

        self.map0 = map0  #really same as icells
        self.rmap0 = rmap0
コード例 #3
0
ファイル: manifold.py プロジェクト: poke53280/ml_mercari
np.fill_diagonal(X, 0)



for x in l_d:
    iCity0 = d_city[x[0]]
    iCity1 = d_city[x[1]]
    dist = x[2]

    print (iCity0, iCity1, dist)

    X[iCity0, iCity1] = dist
    X[iCity1, iCity0] = dist


res = smacof(X, n_components=2, random_state=1, metric = True, verbose = 1, n_init = 10, eps=1e-12, max_iter=3000)


cities = towns
coords = res

# dist(df, 'skien', 'oslo', d_city)


df = pd.DataFrame({
    'x': coords[0][:, 0],
    'y': coords[0][:, 1],
    'group': cities
})

def dist (df, t0, t1, d_city):
コード例 #4
0
ファイル: mds.py プロジェクト: vivekkohar/PHATE
def smacof(
    D,
    n_components=2,
    metric=True,
    init=None,
    random_state=None,
    verbose=0,
    max_iter=3000,
    eps=1e-6,
    n_jobs=1,
):
    """Metric and non-metric MDS using SMACOF

    Parameters
    ----------
    D : array-like, shape=[n_samples, n_samples]
        pairwise distances

    n_components : int, optional (default: 2)
        number of dimensions in which to embed `D`
        
    metric : bool, optional (default: True)
        Use metric MDS. If False, uses non-metric MDS

    init : array-like or None, optional (default: None)
        Initialization state

    random_state : int, RandomState or None, optional (default: None)
        numpy random state

    verbose : int or bool, optional (default: 0)
        verbosity

    max_iter : int, optional (default: 3000)
        maximum iterations

    eps : float, optional (default: 1e-6)
        stopping criterion

    Returns
    -------
    Y : array-like, shape=[n_samples, n_components]
        embedded data
    """
    _logger.debug(
        "Performing non-metric MDS on " "{} of shape {}...".format(type(D), D.shape)
    )
    # Metric MDS from sklearn
    Y, _ = manifold.smacof(
        D,
        n_components=n_components,
        metric=metric,
        max_iter=max_iter,
        eps=eps,
        random_state=random_state,
        n_jobs=n_jobs,
        n_init=1,
        init=init,
        verbose=verbose,
    )
    return Y
コード例 #5
0
ファイル: data.py プロジェクト: handsomeboy/metriclearning
def SMACOF(D, num_iter, eps):
    X, stress = manifold.smacof(D, metric=False,n_components=2,verbose=2,\
        max_iter=num_iter, eps=eps, n_jobs=8)

    return X
コード例 #6
0
ファイル: mds.py プロジェクト: gyd1990/PHATE
def embed_MDS(X,
              ndim=2,
              how='metric',
              distance_metric='euclidean',
              n_jobs=1,
              seed=None,
              verbose=0):
    """Performs classic, metric, and non-metric MDS

    Metric MDS is initialized using classic MDS,
    non-metric MDS is initialized using metric MDS.

    Parameters
    ----------
    X: ndarray [n_samples, n_samples]
        2 dimensional input data array with n_samples
        embed_MDS does not check for matrix squareness,
        but this is necessary for PHATE

    n_dim : int, optional, default: 2
        number of dimensions in which the data will be embedded

    how : string, optional, default: 'classic'
        choose from ['classic', 'metric', 'nonmetric']
        which MDS algorithm is used for dimensionality reduction

    distance_metric : string, optional, default: 'euclidean'
        choose from ['cosine', 'euclidean']
        distance metric for MDS

    n_jobs : integer, optional, default: 1
        The number of jobs to use for the computation.
        If -1 all CPUs are used. If 1 is given, no parallel computing code is
        used at all, which is useful for debugging.
        For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
        n_jobs = -2, all CPUs but one are used

    seed: integer or numpy.RandomState, optional
        The generator used to initialize SMACOF (metric, nonmetric) MDS
        If an integer is given, it fixes the seed
        Defaults to the global numpy random number generator

    Returns
    -------
    Y : ndarray [n_samples, n_dim]
        low dimensional embedding of X using MDS
    """
    if how not in ['classic', 'metric', 'nonmetric']:
        raise ValueError("Allowable 'how' values for MDS: 'classic', "
                         "'metric', or 'nonmetric'. "
                         "'{}' was passed.".format(how))

    # MDS embeddings, each gives a different output.
    X_dist = squareform(pdist(X, distance_metric))

    # initialize all by CMDS
    Y = cmdscale_fast(X_dist, ndim)
    if how in ['metric', 'nonmetric']:
        log_debug("Performing metric MDS on "
                  "{} of shape {}...".format(type(X_dist), X_dist.shape))
        # Metric MDS from sklearn
        Y, _ = smacof(X_dist,
                      n_components=ndim,
                      metric=True,
                      max_iter=3000,
                      eps=1e-6,
                      random_state=seed,
                      n_jobs=n_jobs,
                      n_init=1,
                      init=Y,
                      verbose=verbose)
    if how == 'nonmetric':
        log_debug("Performing non-metric MDS on "
                  "{} of shape {}...".format(type(X_dist), X_dist.shape))
        # Nonmetric MDS from sklearn using metric MDS as an initialization
        Y, _ = smacof(X_dist,
                      n_components=ndim,
                      metric=True,
                      max_iter=3000,
                      eps=1e-6,
                      random_state=seed,
                      n_jobs=n_jobs,
                      n_init=1,
                      init=Y,
                      verbose=verbose)
    return Y
コード例 #7
0
    def __init__(self,df_avg,df_seg0,icells,edges,init=None,seed=137,xfac=1.0,wfac=1.0):
        map0,rmap0 = mk_maps(df_avg,icells)
        edges_0 = rmap0[edges]

        print("wfac",wfac)

        self.e0 = edges_0[:,0]
        self.e1 = edges_0[:,1]

        X = df_seg0.loc[icells,:].values
        dist = euclidean_distances(X)

        edist = dist[self.e0,self.e1]

        print("edist",edist[:5])

        weights = np.ones(dist.shape)
        if wfac != 1.0:
            print("weights")
            weights[self.e0,self.e1] = wfac
            weights[self.e1,self.e0] = wfac        

        if init is None:
            np.random.seed(seed)

        #n_init should not be 1 for random seed case
        if wfac == 1.0:
            ux2,stress,n_iter = smacof(dist,init=init,n_init=1,return_n_iter=True)
        else:
            ux2,stress,xdist,n_iter = smacof2(dist,init=init,n_init=1,return_n_iter=True,weights=weights)
        #ux2,stress,xdist,n_iter = smacof2(dist,init=init,n_init=1,return_n_iter=True,weights=None)

        print("n_iter",n_iter)

        """
        exdist = xdist[self.e0,self.e1]

        eratio = exdist/edist

        print(np.amax(eratio), np.amin(eratio))


        plt.hist(eratio,bins=50,log=True)
        plt.show()
        """

        
        #ux2,stress,n_iter = smacof2(dist,return_n_iter=True,weights=weights) #here init is None
        ux2[:,0] = xfac*ux2[:,0]
        

        segs = ux2[edges_0]
        segs0 = np.mean(segs,axis=1,keepdims=True)
        dsegs = segs - segs0
        segs = .95*dsegs + segs0

        self.df_avg = df_avg
        self.ux2 = ux2
        self.segs = segs
        self.edges_0 = edges_0

        self.map0 = map0 #really same as icells
        self.rmap0 = rmap0
コード例 #8
0
 def fit_transform(self, data):
     dist_matrix = squareform(pdist(data, metric=self.metric))
     return smacof(dist_matrix)
コード例 #9
0
scores_img = rsa.compare_to(model, distance="spearmanr", n_perms=200)

# Compute just the distance with the model
pval, true_score, random_score = mantel_test(avg_rdm, model, "spearmanr", 1000)

# MDS
seed = np.random.RandomState(seed=3)
mds = manifold.MDS(n_components=2,
                   max_iter=3000,
                   eps=1e-9,
                   random_state=seed,
                   dissimilarity="precomputed",
                   n_jobs=1)
pos_mds = mds.fit(check_rdm(avg_rdm)).embedding_
pos_smacof, _ = manifold.smacof(check_rdm(avg_rdm),
                                n_components=2,
                                random_state=seed)

# ******************************************************************************
# ***** Figure *****************************************************************
# ******************************************************************************
fig, axes = plt.subplots(2, 3, figsize=(12, 10))
# The average RDM
plot_rdm(avg_rdm,
         "Average RDM",
         triangle="lower",
         ax=axes[0, 0],
         cblabel="Euclidean distance")

# Plot
plot_position(pos_mds,