def _fit(self, X, y, groups, parameter_iterable): """Actual fitting, performing the search over parameters.""" X, y, groups = indexable(X, y, groups) cv = check_cv(self.cv, y, classifier=True) n_splits = cv.get_n_splits(X, y, groups) if self.verbose > 0 and isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) LOG.info("Fitting %d folds for each of %d candidates, totalling" " %d fits", n_splits, n_candidates, n_candidates * n_splits) pre_dispatch = self.pre_dispatch cv_iter = list(cv.split(X, y, groups)) out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch )(delayed(_model_fit_and_score)( estimator, X, y, self.scoring, train, test, self.verbose, parameters, fit_params=self.fit_params, return_train_score=self.return_train_score, return_n_test_samples=True, return_times=True, return_parameters=True, error_score=self.error_score) for estimator, parameters in parameter_iterable for train, test in cv_iter) # if one choose to see train score, "out" will contain train score info if self.return_train_score: (train_scores, test_scores, test_sample_counts, fit_time, score_time, parameters) = zip(*out) else: (test_scores, test_sample_counts, fit_time, score_time, parameters) = zip(*out) candidate_params = parameters[::n_splits] n_candidates = len(candidate_params) results = dict() def _store(key_name, array, weights=None, splits=False, rank=False): """A small helper to store the scores/times to the cv_results_""" array = np.array(array, dtype=np.float64).reshape(n_candidates, n_splits) if splits: for split_i in range(n_splits): results["split%d_%s" % (split_i, key_name)] = array[:, split_i] array_means = np.average(array, axis=1, weights=weights) results['mean_%s' % key_name] = array_means # Weighted std is not directly available in numpy array_stds = np.sqrt(np.average((array - array_means[:, np.newaxis]) ** 2, axis=1, weights=weights)) results['std_%s' % key_name] = array_stds if rank: results["rank_%s" % key_name] = np.asarray( rankdata(-array_means, method='min'), dtype=np.int32) # Computed the (weighted) mean and std for test scores alone # NOTE test_sample counts (weights) remain the same for all candidates test_sample_counts = np.array(test_sample_counts[:n_splits], dtype=np.int) _store('test_score', test_scores, splits=True, rank=True, weights=test_sample_counts if self.iid else None) if self.return_train_score: _store('train_score', train_scores, splits=True) _store('fit_time', fit_time) _store('score_time', score_time) best_index = np.flatnonzero(results["rank_test_score"] == 1)[0] best_parameters = candidate_params[best_index][1] # Use one MaskedArray and mask all the places where the param is not # applicable for that candidate. Use defaultdict as each candidate may # not contain all the params param_results = defaultdict(partial(MaskedArray, np.empty(n_candidates,), mask=True, dtype=object)) for cand_i, params in enumerate(candidate_params): _, param_values = params for name, value in param_values.items(): # An all masked empty array gets created for the key # `"param_%s" % name` at the first occurence of `name`. # Setting the value at an index also unmasks that index param_results["param_%s" % name][cand_i] = value results.update(param_results) # Store a list of param dicts at the key 'params' results['params'] = candidate_params self.cv_results_ = results self.best_index_ = best_index self.n_splits_ = n_splits self.best_model_ = candidate_params[best_index] if self.refit: # build best estimator and fit best_estimator = _clf_build(self.best_model_[0]) best_estimator.set_params(**best_parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self
def _fit(self, X, y, groups, parameter_iterable): """Actual fitting, performing the search over parameters.""" X, y, groups = indexable(X, y, groups) cv = check_cv(self.cv, y, classifier=True) n_splits = cv.get_n_splits(X, y, groups) if self.verbose > 0 and isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) LOG.info( "Fitting %d folds for each of %d candidates, totalling" " %d fits", n_splits, n_candidates, n_candidates * n_splits) pre_dispatch = self.pre_dispatch cv_iter = list(cv.split(X, y, groups)) out = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch)( delayed(_model_fit_and_score)( estimator, X, y, self.scoring, train, test, self.verbose, parameters, fit_params=self.fit_params, return_train_score=self.return_train_score, return_n_test_samples=True, return_times=True, return_parameters=True, error_score=self.error_score) for estimator, parameters in parameter_iterable for train, test in cv_iter) # if one choose to see train score, "out" will contain train score info if self.return_train_score: (train_scores, test_scores, test_sample_counts, fit_time, score_time, parameters) = zip(*out) else: (test_scores, test_sample_counts, fit_time, score_time, parameters) = zip(*out) candidate_params = parameters[::n_splits] n_candidates = len(candidate_params) results = dict() def _store(key_name, array, weights=None, splits=False, rank=False): """A small helper to store the scores/times to the cv_results_""" array = np.array(array, dtype=np.float64).reshape(n_candidates, n_splits) if splits: for split_i in range(n_splits): results["split%d_%s" % (split_i, key_name)] = array[:, split_i] array_means = np.average(array, axis=1, weights=weights) results['mean_%s' % key_name] = array_means # Weighted std is not directly available in numpy array_stds = np.sqrt( np.average((array - array_means[:, np.newaxis])**2, axis=1, weights=weights)) results['std_%s' % key_name] = array_stds if rank: results["rank_%s" % key_name] = np.asarray(rankdata( -array_means, method='min'), dtype=np.int32) # Computed the (weighted) mean and std for test scores alone # NOTE test_sample counts (weights) remain the same for all candidates test_sample_counts = np.array(test_sample_counts[:n_splits], dtype=np.int) _store('test_score', test_scores, splits=True, rank=True, weights=test_sample_counts if self.iid else None) if self.return_train_score: _store('train_score', train_scores, splits=True) _store('fit_time', fit_time) _store('score_time', score_time) best_index = np.flatnonzero(results["rank_test_score"] == 1)[0] best_parameters = candidate_params[best_index][1] # Use one MaskedArray and mask all the places where the param is not # applicable for that candidate. Use defaultdict as each candidate may # not contain all the params param_results = defaultdict( partial(MaskedArray, np.empty(n_candidates, ), mask=True, dtype=object)) for cand_i, params in enumerate(candidate_params): _, param_values = params for name, value in param_values.items(): # An all masked empty array gets created for the key # `"param_%s" % name` at the first occurence of `name`. # Setting the value at an index also unmasks that index param_results["param_%s" % name][cand_i] = value results.update(param_results) # Store a list of param dicts at the key 'params' results['params'] = candidate_params self.cv_results_ = results self.best_index_ = best_index self.n_splits_ = n_splits self.best_model_ = candidate_params[best_index] if self.refit: # build best estimator and fit best_estimator = _clf_build(self.best_model_[0]) best_estimator.set_params(**best_parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self
def fit(self, X, y=None, groups=None, **fit_params): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of the estimator """ if self.fit_params is not None: warnings.warn( '"fit_params" as a constructor argument was ' 'deprecated in version 0.19 and will be removed ' 'in version 0.21. Pass fit parameters to the ' '"fit" method instead.', DeprecationWarning) if fit_params: warnings.warn( 'Ignoring fit_params passed as a constructor ' 'argument in favor of keyword arguments to ' 'the "fit" method.', RuntimeWarning) else: fit_params = self.fit_params estimator = self.estimator cv = check_cv(self.cv, y, classifier=is_classifier(estimator)) scorers, self.multimetric_ = _check_multimetric_scoring( self.estimator, scoring=self.scoring) if self.multimetric_: if self.refit is not False and ( not isinstance(self.refit, six.string_types) or # This will work for both dict / list (tuple) self.refit not in scorers): raise ValueError("For multi-metric scoring, the parameter " "refit must be set to a scorer key " "to refit an estimator with the best " "parameter setting on the whole data and " "make the best_* attributes " "available for that metric. If this is not " "needed, refit should be set to False " "explicitly. %r was passed." % self.refit) else: refit_metric = self.refit else: refit_metric = 'score' X, y, groups = indexable(X, y, groups) n_splits = cv.get_n_splits(X, y, groups) # Regenerate parameter iterable for each fit candidate_params = list(self._get_param_iterator()) n_candidates = len(candidate_params) if self.verbose > 0: print("Fitting {0} folds for each of {1} candidates, totalling" " {2} fits".format(n_splits, n_candidates, n_candidates * n_splits)) base_estimator = clone(self.estimator) pre_dispatch = self.pre_dispatch out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch, n_tasks=n_candidates * n_splits, )(delayed(_fit_and_score)(clone(base_estimator), X, y, scorers, train, test, self.verbose, parameters, fit_params=fit_params, return_train_score=self.return_train_score, return_n_test_samples=True, return_times=True, return_parameters=False, error_score=self.error_score) for parameters, ( train, test) in product(candidate_params, cv.split(X, y, groups))) # if one choose to see train score, "out" will contain train score info if self.return_train_score: (train_score_dicts, test_score_dicts, test_sample_counts, fit_time, score_time) = zip(*out) else: (test_score_dicts, test_sample_counts, fit_time, score_time) = zip(*out) # test_score_dicts and train_score dicts are lists of dictionaries and # we make them into dict of lists test_scores = _aggregate_score_dicts(test_score_dicts) if self.return_train_score: train_scores = _aggregate_score_dicts(train_score_dicts) results = dict() def _store(key_name, array, weights=None, splits=False, rank=False): """A small helper to store the scores/times to the cv_results_""" # When iterated first by splits, then by parameters # We want `array` to have `n_candidates` rows and `n_splits` cols. array = np.array(array, dtype=np.float64).reshape(n_candidates, n_splits) if splits: for split_i in range(n_splits): # Uses closure to alter the results results["split%d_%s" % (split_i, key_name)] = array[:, split_i] array_means = np.average(array, axis=1, weights=weights) results['mean_%s' % key_name] = array_means # Weighted std is not directly available in numpy array_stds = np.sqrt( np.average((array - array_means[:, np.newaxis])**2, axis=1, weights=weights)) results['std_%s' % key_name] = array_stds if rank: results["rank_%s" % key_name] = np.asarray(rankdata(-array_means, method='min'), dtype=np.int32) _store('fit_time', fit_time) _store('score_time', score_time) # Use one MaskedArray and mask all the places where the param is not # applicable for that candidate. Use defaultdict as each candidate may # not contain all the params param_results = defaultdict( partial(MaskedArray, np.empty(n_candidates, ), mask=True, dtype=object)) for cand_i, params in enumerate(candidate_params): for name, value in params.items(): # An all masked empty array gets created for the key # `"param_%s" % name` at the first occurence of `name`. # Setting the value at an index also unmasks that index param_results["param_%s" % name][cand_i] = value results.update(param_results) # Store a list of param dicts at the key 'params' results['params'] = candidate_params # NOTE test_sample counts (weights) remain the same for all candidates test_sample_counts = np.array(test_sample_counts[:n_splits], dtype=np.int) for scorer_name in scorers.keys(): # Computed the (weighted) mean and std for test scores alone _store('test_%s' % scorer_name, test_scores[scorer_name], splits=True, rank=True, weights=test_sample_counts if self.iid else None) if self.return_train_score: _store('train_%s' % scorer_name, train_scores[scorer_name], splits=True) # For multi-metric evaluation, store the best_index_, best_params_ and # best_score_ iff refit is one of the scorer names # In single metric evaluation, refit_metric is "score" if self.refit or not self.multimetric_: self.best_index_ = results["rank_test_%s" % refit_metric].argmin() self.best_params_ = candidate_params[self.best_index_] self.best_score_ = results["mean_test_%s" % refit_metric][self.best_index_] if self.refit: self.best_estimator_ = clone(base_estimator).set_params( **self.best_params_) if y is not None: self.best_estimator_.fit(X, y, **fit_params) else: self.best_estimator_.fit(X, **fit_params) # Store the only scorer not as a dict for single metric evaluation self.scorer_ = scorers if self.multimetric_ else scorers['score'] self.cv_results_ = results self.n_splits_ = n_splits return self