def __init__(self, nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, tol=0.001, cache_size=200, verbose=False, max_iter=(-1)): self._hyperparams = { 'nu': nu, 'C': C, 'kernel': kernel, 'degree': degree, 'gamma': gamma, 'coef0': coef0, 'shrinking': shrinking, 'tol': tol, 'cache_size': cache_size, 'verbose': verbose, 'max_iter': max_iter } self._wrapped_model = SKLModel(**self._hyperparams)
def fit(self, X, y=None): self._sklearn_model = SKLModel(**self._hyperparams) if (y is not None): self._sklearn_model.fit(X, y) else: self._sklearn_model.fit(X) return self
def __init__(self, C=1.0, kernel='rbf', degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight='balanced', verbose=False, max_iter=(-1), decision_function_shape='ovr', random_state=None): self._hyperparams = { 'C': C, 'kernel': kernel, 'degree': degree, 'gamma': gamma, 'coef0': coef0, 'shrinking': shrinking, 'probability': probability, 'tol': tol, 'cache_size': cache_size, 'class_weight': class_weight, 'verbose': verbose, 'max_iter': max_iter, 'decision_function_shape': decision_function_shape, 'random_state': random_state } self._wrapped_model = SKLModel(**self._hyperparams)
def __init__(self, penalty='l2', loss='squared_hinge', dual=True, tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight='balanced', verbose=0, random_state=None, max_iter=1000): self._hyperparams = { 'penalty': penalty, 'loss': loss, 'dual': dual, 'tol': tol, 'C': C, 'multi_class': multi_class, 'fit_intercept': fit_intercept, 'intercept_scaling': intercept_scaling, 'class_weight': class_weight, 'verbose': verbose, 'random_state': random_state, 'max_iter': max_iter} self._wrapped_model = SKLModel(**self._hyperparams)
def __init__(self, epsilon=0.0, tol=0.0001, C=1.0, loss='epsilon_insensitive', fit_intercept=True, intercept_scaling=1.0, dual=True, verbose=0, random_state=None, max_iter=1000): self._hyperparams = { 'epsilon': epsilon, 'tol': tol, 'C': C, 'loss': loss, 'fit_intercept': fit_intercept, 'intercept_scaling': intercept_scaling, 'dual': dual, 'verbose': verbose, 'random_state': random_state, 'max_iter': max_iter } self._wrapped_model = SKLModel(**self._hyperparams)