コード例 #1
0
    def Solve(self, K):

        #GET EIGENVALUES AND EIGENVECTOR THE CENTER KERNEL
        self.lambdas_, self.vectors_ = linalg.eigh(
            K, eigvals=(K.shape[0] - self.n_components, K.shape[0] - 1))

        # make sure that the eigenvalues are ok and fix numerical issues
        self.lambdas_ = _check_psd_eigenvalues(self.lambdas_,
                                               enable_warnings=False)

        # flip eigenvectors' sign to enforce deterministic output
        self.vectors_, _ = svd_flip(self.vectors_,
                                    np.empty_like(self.vectors_).T)

        # sort eigenvectors in descending order
        indices = self.lambdas_.argsort()[::-1]
        self.lambdas_ = self.lambdas_[indices]
        self.vectors_ = self.vectors_[:, indices]

        # remove eigenvectors with a zero eigenvalue (null space) if required
        if self.remove_zero_eig:
            self.vectors_ = self.vectors_[:, self.lambdas_ > 0]
            self.lambdas_ = self.lambdas_[self.lambdas_ > 0]

        return K
コード例 #2
0
def test_kernel_conditioning():
    """ Test that ``_check_psd_eigenvalues`` is correctly called
    Non-regression test for issue #12140 (PR #12145)"""

    # create a pathological X leading to small non-zero eigenvalue
    X = [[5, 1], [5 + 1e-8, 1e-8], [5 + 1e-8, 0]]
    kpca = KernelPCA(kernel="linear",
                     n_components=2,
                     fit_inverse_transform=True)
    kpca.fit(X)

    # check that the small non-zero eigenvalue was correctly set to zero
    assert kpca.lambdas_.min() == 0
    assert np.all(kpca.lambdas_ == _check_psd_eigenvalues(kpca.lambdas_))
コード例 #3
0
def test_check_psd_eigenvalues_valid(lambdas, expected_lambdas, w_type, w_msg,
                                     enable_warnings):
    # Test that ``_check_psd_eigenvalues`` returns the right output for valid
    # input, possibly raising the right warning

    if not enable_warnings:
        w_type = None
        w_msg = ""

    with pytest.warns(w_type, match=w_msg) as w:
        assert_array_equal(
            _check_psd_eigenvalues(lambdas, enable_warnings=enable_warnings),
            expected_lambdas)
    if w_type is None:
        assert not w
    def Solve(self, K):

        # SELECT THE BEST METHOD TO CALCULATE THE EIGENVALUES
        if self.eigen_solver == 'auto':
            if K.shape[0] > 200 and self.n_components < 10:
                eigen_solver = 'arpack'
            else:
                eigen_solver = 'dense'
        else:
            eigen_solver = self.eigen_solver

        #GET EIGENVALUES AND EIGENVECTOR THE CENTER KERNEL
        if eigen_solver == 'dense':
            self.lambdas_, self.vectors_ = linalg.eigh(
                K, eigvals=(K.shape[0] - self.n_components, K.shape[0] - 1))
        elif eigen_solver == 'arpack':
            random_state = check_random_state(self.random_state)
            # initialize with [-1,1] as in ARPACK
            v0 = random_state.uniform(-1, 1, K.shape[0])
            self.lambdas_, self.vectors_ = eigsh(K,
                                                 self.n_components,
                                                 which="LA",
                                                 tol=self.tol,
                                                 maxiter=self.max_iter,
                                                 v0=v0)

        # make sure that the eigenvalues are ok and fix numerical issues
        self.lambdas_ = _check_psd_eigenvalues(self.lambdas_,
                                               enable_warnings=False)

        # flip eigenvectors' sign to enforce deterministic output
        self.vectors_, _ = svd_flip(self.vectors_,
                                    np.empty_like(self.vectors_).T)

        # sort eigenvectors in descending order
        indices = self.lambdas_.argsort()[::-1]
        self.lambdas_ = self.lambdas_[indices]
        self.vectors_ = self.vectors_[:, indices]

        # remove eigenvectors with a zero eigenvalue (null space) if required
        if self.remove_zero_eig:
            self.vectors_ = self.vectors_[:, self.lambdas_ > 0]
            self.lambdas_ = self.lambdas_[self.lambdas_ > 0]

        return K
コード例 #5
0
    def _fit_transform(self, K):
        """ Fit's using kernel K"""
        # center kernel
        K = self._centerer.fit_transform(K)

        self.lambdas_, self.alphas_ = linalg.eigh(
            K, eigvals=(K.shape[0] - self.n_components, K.shape[0] - 1))

        # make sure that the eigenvalues are ok and fix numerical issues
        self.lambdas_ = _check_psd_eigenvalues(self.lambdas_,
                                               enable_warnings=False)

        # flip eigenvectors' sign to enforce deterministic output
        self.alphas_, _ = svd_flip(self.alphas_, np.empty_like(self.alphas_).T)

        # sort eigenvectors in descending order
        indices = self.lambdas_.argsort()[::-1]
        self.lambdas_ = self.lambdas_[indices]
        self.alphas_ = self.alphas_[:, indices]

        # remove eigenvectors with a zero eigenvalue (null space) if required
        self.alphas_ = self.alphas_[:, self.lambdas_ > 0]
        self.lambdas_ = self.lambdas_[self.lambdas_ > 0]

        # Maintenance note on Eigenvectors normalization
        # ----------------------------------------------
        # there is a link between
        # the eigenvectors of K=Phi(X)'Phi(X) and the ones of Phi(X)Phi(X)'
        # if v is an eigenvector of K
        #     then Phi(X)v  is an eigenvector of Phi(X)Phi(X)'
        # if u is an eigenvector of Phi(X)Phi(X)'
        #     then Phi(X)'u is an eigenvector of Phi(X)Phi(X)'
        #
        # At this stage our self.alphas_ (the v) have norm 1, we need to scale
        # them so that eigenvectors in kernel feature space (the u) have norm=1
        # instead
        #
        # We COULD scale them here:
        #       self.alphas_ = self.alphas_ / np.sqrt(self.lambdas_)
        #
        # But choose to perform that LATER when needed, in `fit()` and in
        # `transform()`.

        return K
コード例 #6
0
def test_check_psd_eigenvalues_invalid(lambdas, err_type, err_msg):
    # Test that ``_check_psd_eigenvalues`` raises the right error for invalid
    # input

    with pytest.raises(err_type, match=err_msg):
        _check_psd_eigenvalues(lambdas)
コード例 #7
0
    def _fit_transform(self, K):
        """ Fit's using kernel K"""
        # center kernel
        K = self._centerer.fit_transform(K)

        if self.n_components is None:
            n_components = K.shape[0]
        else:
            n_components = min(K.shape[0], self.n_components)

        # compute eigenvectors
        if self.eigen_solver == 'auto':
            if K.shape[0] > 200 and n_components < 10:
                eigen_solver = 'arpack'
            else:
                eigen_solver = 'dense'
        else:
            eigen_solver = self.eigen_solver

        if eigen_solver == 'dense':
            self.lambdas_, self.alphas_ = linalg.eigh(
                K, eigvals=(K.shape[0] - n_components, K.shape[0] - 1))
        elif eigen_solver == 'arpack':
            random_state = check_random_state(self.random_state)
            # initialize with [-1,1] as in ARPACK
            v0 = random_state.uniform(-1, 1, K.shape[0])
            self.lambdas_, self.alphas_ = eigsh(K,
                                                n_components,
                                                which="LA",
                                                tol=self.tol,
                                                maxiter=self.max_iter,
                                                v0=v0)

        # make sure that the eigenvalues are ok and fix numerical issues
        self.lambdas_ = _check_psd_eigenvalues(self.lambdas_,
                                               enable_warnings=False)

        # flip eigenvectors' sign to enforce deterministic output
        self.alphas_, _ = svd_flip(self.alphas_, np.empty_like(self.alphas_).T)

        # sort eigenvectors in descending order
        indices = self.lambdas_.argsort()[::-1]
        self.lambdas_ = self.lambdas_[indices]
        self.alphas_ = self.alphas_[:, indices]

        # remove eigenvectors with a zero eigenvalue (null space) if required
        if self.remove_zero_eig or self.n_components is None:
            self.alphas_ = self.alphas_[:, self.lambdas_ > 0]
            self.lambdas_ = self.lambdas_[self.lambdas_ > 0]

        # Maintenance note on Eigenvectors normalization
        # ----------------------------------------------
        # there is a link between
        # the eigenvectors of K=Phi(X)'Phi(X) and the ones of Phi(X)Phi(X)'
        # if v is an eigenvector of K
        #     then Phi(X)v  is an eigenvector of Phi(X)Phi(X)'
        # if u is an eigenvector of Phi(X)Phi(X)'
        #     then Phi(X)'u is an eigenvector of Phi(X)Phi(X)'
        #
        # At this stage our self.alphas_ (the v) have norm 1, we need to scale
        # them so that eigenvectors in kernel feature space (the u) have norm=1
        # instead
        #
        # We COULD scale them here:
        #       self.alphas_ = self.alphas_ / np.sqrt(self.lambdas_)
        #
        # But choose to perform that LATER when needed, in `fit()` and in
        # `transform()`.

        return K