alpha=0.95, activation_func='multiquadric', activation_args=None, user_components=None, regressor=linear_model.Ridge(), random_state=None) #====================== # TRAIN ELM #====================== elm.fit(TRAIN, Y_train) #====================== # ELM PREDICTION #====================== Y_pred = elm.predict(TEST) #====================== # SCORE CALCULATION #====================== score = elm.score(TEST, Y_test) f1_weighted = metrics.f1_score( Y_test, Y_pred, labels=None, pos_label=1, average='weighted', sample_weight=None) #toma en cuenta el desbalance de etiqueta precision_score = metrics.precision_score(Y_test, Y_pred,
y_test = X[X[:, 0] == v][:, 1] y_train_real = y_train.copy() #%% #### ELM DEFINIDO PELO SKLEARN clsf = ELMClassifier(random_state=100) #clsf.fit(X[:v, 2:], y[:v]) clsf.fit(X_train, y_train) Htreino = clsf._get_weights() print() print(clsf.predict(X_test)) #print() #print(y[v:]) print('Score:', clsf.score(X_test, y_test)) Hteste = clsf._get_weights() #%% ################# ELM IMPLENTÇÃO DO KAGGLE ################ # https://www.kaggle.com/robertbm/extreme-learning-machine-example # # funções
rot.append([*arq.split('.')]) #%% #arr = np.array(arr) #class_dict = dict(zip(np.unique(arr[:,2]), range(len(np.unique(arr[:,2]))))) rot = np.array(rot) class_dict = dict(zip(np.unique(rot[:, 1]), range(len(np.unique(rot[:, 1]))))) print('Quantidade de rotulos:', len(np.unique(rot[:, 1]))) print('Quantidade de pessoas:', len(np.unique(rot[:, 0]))) X = np.array(arr) # TRANSFORMANDO VETOR DAS IMAGENS EM ARRAY y = rot[:, 1] # PEGANDO APENAS OS LABELS y = np.vectorize(class_dict.get)(y) # TRANSFORMANDO LABELS EM NUMEROS #a = ELMRegressor() #a.fit(X, y) v = -11 clsf = ELMClassifier() clsf.fit(X[:v], y[:v]) print() print(clsf.predict(X[v:])) print(y[v:]) print('Socore:', clsf.score(X[v:], y[v:]))
TRAIN = sX_train # --> Datos ESTANDARIZADOS TEST = sX_test # --> Datos ESTANDARIZADOS clf=ELMClassifier(n_hidden=4000,alpha=0.95,activation_func='multiquadric',activation_args=None, user_components=None,regressor=linear_model.Ridge(),random_state=None) clf.fit(TRAIN, Y_train) #TEST = X_test # --> Datos CRUDOS TEST = sX_test # --> Datos ESTANDARIZADOS #TEST = nX_test # --> Datos NORMALIZADOS Y_pred = clf.predict(TEST) #====================== # SCORE CALCULATION #====================== score = clf.score(TEST, Y_test) print("\nAccuracy: %0.2f" % (score)) #Cohen’s kappa-[-1,1]->Si>0.8 se considera ok score=metrics.cohen_kappa_score(Y_test, Y_pred) print("Cohen’s kappa: %0.2f " % score) # Hamming loss¶ . when 0 excelent score=metrics.hamming_loss(Y_test, Y_pred) print("Hamming loss: %0.2f " % score)