def test_number_of_subsets_of_features(): # In RFE, 'number_of_subsets_of_features' # = the number of iterations in '_fit' # = max(ranking_) # = 1 + (n_features + step - n_features_to_select - 1) // step # After optimization #4534, this number # = 1 + np.ceil((n_features - n_features_to_select) / float(step)) # This test case is to test their equivalence, refer to #4534 and #3824 def formula1(n_features, n_features_to_select, step): return 1 + ((n_features + step - n_features_to_select - 1) // step) def formula2(n_features, n_features_to_select, step): return 1 + np.ceil((n_features - n_features_to_select) / float(step)) # RFE # Case 1, n_features - n_features_to_select is divisible by step # Case 2, n_features - n_features_to_select is not divisible by step n_features_list = [11, 11] n_features_to_select_list = [3, 3] step_list = [2, 3] for n_features, n_features_to_select, step in zip( n_features_list, n_features_to_select_list, step_list): generator = check_random_state(43) X = generator.normal(size=(100, n_features)) y = generator.rand(100).round() rfe = RFE(estimator=SVC(kernel="linear"), n_features_to_select=n_features_to_select, step=step) rfe.fit(X, y) # this number also equals to the maximum of ranking_ assert (np.max(rfe.ranking_) == formula1(n_features, n_features_to_select, step)) assert (np.max(rfe.ranking_) == formula2(n_features, n_features_to_select, step)) # In RFECV, 'fit' calls 'RFE._fit' # 'number_of_subsets_of_features' of RFE # = the size of 'grid_scores' of RFECV # = the number of iterations of the for loop before optimization #4534 # RFECV, n_features_to_select = 1 # Case 1, n_features - 1 is divisible by step # Case 2, n_features - 1 is not divisible by step n_features_to_select = 1 n_features_list = [11, 10] step_list = [2, 2] for n_features, step in zip(n_features_list, step_list): generator = check_random_state(43) X = generator.normal(size=(100, n_features)) y = generator.rand(100).round() rfecv = RFECV(estimator=SVC(kernel="linear"), step=step) rfecv.fit(X, y) assert (rfecv.grid_scores_.shape[0] == formula1( n_features, n_features_to_select, step)) assert (rfecv.grid_scores_.shape[0] == formula2( n_features, n_features_to_select, step))
def test_rfecv_mockclassifier(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) # regression test: list should be supported # Test using the score function rfecv = RFECV(estimator=MockClassifier(), step=1) rfecv.fit(X, y) # non-regression test for missing worst feature: assert len(rfecv.grid_scores_) == X.shape[1] assert len(rfecv.ranking_) == X.shape[1]
def test_rfe_cv_groups(): generator = check_random_state(0) iris = load_iris() number_groups = 4 groups = np.floor(np.linspace(0, number_groups, len(iris.target))) X = iris.data y = (iris.target > 0).astype(int) est_groups = RFECV( estimator=RandomForestClassifier(random_state=generator), step=1, scoring='accuracy', cv=GroupKFold(n_splits=2)) est_groups.fit(X, y, groups=groups) assert est_groups.n_features_ > 0
def test_rfe_cv_n_jobs(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target rfecv = RFECV(estimator=SVC(kernel='linear')) rfecv.fit(X, y) rfecv_ranking = rfecv.ranking_ rfecv_grid_scores = rfecv.grid_scores_ rfecv.set_params(n_jobs=2) rfecv.fit(X, y) assert_array_almost_equal(rfecv.ranking_, rfecv_ranking) assert_array_almost_equal(rfecv.grid_scores_, rfecv_grid_scores)
def test_rfe_allow_nan_inf_in_x(cv): iris = load_iris() X = iris.data y = iris.target # add nan and inf value to X X[0][0] = np.NaN X[0][1] = np.Inf clf = MockClassifier() if cv is not None: rfe = RFECV(estimator=clf, cv=cv) else: rfe = RFE(estimator=clf) rfe.fit(X, y) rfe.transform(X)
def test_rfecv_verbose_output(): # Check verbose=1 is producing an output. from io import StringIO import sys sys.stdout = StringIO() generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, verbose=1) rfecv.fit(X, y) verbose_output = sys.stdout verbose_output.seek(0) assert len(verbose_output.readline()) > 0
def test_rfecv_grid_scores_size(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) # regression test: list should be supported # Non-regression test for varying combinations of step and # min_features_to_select. for step, min_features_to_select in [[2, 1], [2, 2], [3, 3]]: rfecv = RFECV(estimator=MockClassifier(), step=step, min_features_to_select=min_features_to_select) rfecv.fit(X, y) score_len = np.ceil((X.shape[1] - min_features_to_select) / step) + 1 assert len(rfecv.grid_scores_) == score_len assert len(rfecv.ranking_) == X.shape[1] assert rfecv.n_features_ >= min_features_to_select
def test_rfecv(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) # regression test: list should be supported # Test using the score function rfecv = RFECV(estimator=SVC(kernel="linear"), step=1) rfecv.fit(X, y) # non-regression test for missing worst feature: assert len(rfecv.grid_scores_) == X.shape[1] assert len(rfecv.ranking_) == X.shape[1] X_r = rfecv.transform(X) # All the noisy variable were filtered out assert_array_equal(X_r, iris.data) # same in sparse rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=1) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) # Test using a customized loss function scoring = make_scorer(zero_one_loss, greater_is_better=False) rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=scoring) ignore_warnings(rfecv.fit)(X, y) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) # Test using a scorer scorer = get_scorer('accuracy') rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=scorer) rfecv.fit(X, y) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) # Test fix on grid_scores def test_scorer(estimator, X, y): return 1.0 rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=test_scorer) rfecv.fit(X, y) assert_array_equal(rfecv.grid_scores_, np.ones(len(rfecv.grid_scores_))) # In the event of cross validation score ties, the expected behavior of # RFECV is to return the FEWEST features that maximize the CV score. # Because test_scorer always returns 1.0 in this example, RFECV should # reduce the dimensionality to a single feature (i.e. n_features_ = 1) assert rfecv.n_features_ == 1 # Same as the first two tests, but with step=2 rfecv = RFECV(estimator=SVC(kernel="linear"), step=2) rfecv.fit(X, y) assert len(rfecv.grid_scores_) == 6 assert len(rfecv.ranking_) == X.shape[1] X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=2) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) # Verifying that steps < 1 don't blow up. rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=.2) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data)