コード例 #1
0
ファイル: test_rfe.py プロジェクト: ivohashamov/hackaTUM
def test_number_of_subsets_of_features():
    # In RFE, 'number_of_subsets_of_features'
    # = the number of iterations in '_fit'
    # = max(ranking_)
    # = 1 + (n_features + step - n_features_to_select - 1) // step
    # After optimization #4534, this number
    # = 1 + np.ceil((n_features - n_features_to_select) / float(step))
    # This test case is to test their equivalence, refer to #4534 and #3824

    def formula1(n_features, n_features_to_select, step):
        return 1 + ((n_features + step - n_features_to_select - 1) // step)

    def formula2(n_features, n_features_to_select, step):
        return 1 + np.ceil((n_features - n_features_to_select) / float(step))

    # RFE
    # Case 1, n_features - n_features_to_select is divisible by step
    # Case 2, n_features - n_features_to_select is not divisible by step
    n_features_list = [11, 11]
    n_features_to_select_list = [3, 3]
    step_list = [2, 3]
    for n_features, n_features_to_select, step in zip(
            n_features_list, n_features_to_select_list, step_list):
        generator = check_random_state(43)
        X = generator.normal(size=(100, n_features))
        y = generator.rand(100).round()
        rfe = RFE(estimator=SVC(kernel="linear"),
                  n_features_to_select=n_features_to_select,
                  step=step)
        rfe.fit(X, y)
        # this number also equals to the maximum of ranking_
        assert (np.max(rfe.ranking_) == formula1(n_features,
                                                 n_features_to_select, step))
        assert (np.max(rfe.ranking_) == formula2(n_features,
                                                 n_features_to_select, step))

    # In RFECV, 'fit' calls 'RFE._fit'
    # 'number_of_subsets_of_features' of RFE
    # = the size of 'grid_scores' of RFECV
    # = the number of iterations of the for loop before optimization #4534

    # RFECV, n_features_to_select = 1
    # Case 1, n_features - 1 is divisible by step
    # Case 2, n_features - 1 is not divisible by step

    n_features_to_select = 1
    n_features_list = [11, 10]
    step_list = [2, 2]
    for n_features, step in zip(n_features_list, step_list):
        generator = check_random_state(43)
        X = generator.normal(size=(100, n_features))
        y = generator.rand(100).round()
        rfecv = RFECV(estimator=SVC(kernel="linear"), step=step)
        rfecv.fit(X, y)

        assert (rfecv.grid_scores_.shape[0] == formula1(
            n_features, n_features_to_select, step))
        assert (rfecv.grid_scores_.shape[0] == formula2(
            n_features, n_features_to_select, step))
コード例 #2
0
ファイル: test_rfe.py プロジェクト: ivohashamov/hackaTUM
def test_rfecv_mockclassifier():
    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = list(iris.target)  # regression test: list should be supported

    # Test using the score function
    rfecv = RFECV(estimator=MockClassifier(), step=1)
    rfecv.fit(X, y)
    # non-regression test for missing worst feature:
    assert len(rfecv.grid_scores_) == X.shape[1]
    assert len(rfecv.ranking_) == X.shape[1]
コード例 #3
0
ファイル: test_rfe.py プロジェクト: ivohashamov/hackaTUM
def test_rfe_cv_groups():
    generator = check_random_state(0)
    iris = load_iris()
    number_groups = 4
    groups = np.floor(np.linspace(0, number_groups, len(iris.target)))
    X = iris.data
    y = (iris.target > 0).astype(int)

    est_groups = RFECV(
        estimator=RandomForestClassifier(random_state=generator),
        step=1,
        scoring='accuracy',
        cv=GroupKFold(n_splits=2))
    est_groups.fit(X, y, groups=groups)
    assert est_groups.n_features_ > 0
コード例 #4
0
ファイル: test_rfe.py プロジェクト: ivohashamov/hackaTUM
def test_rfe_cv_n_jobs():
    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = iris.target

    rfecv = RFECV(estimator=SVC(kernel='linear'))
    rfecv.fit(X, y)
    rfecv_ranking = rfecv.ranking_
    rfecv_grid_scores = rfecv.grid_scores_

    rfecv.set_params(n_jobs=2)
    rfecv.fit(X, y)
    assert_array_almost_equal(rfecv.ranking_, rfecv_ranking)
    assert_array_almost_equal(rfecv.grid_scores_, rfecv_grid_scores)
コード例 #5
0
ファイル: test_rfe.py プロジェクト: ivohashamov/hackaTUM
def test_rfe_allow_nan_inf_in_x(cv):
    iris = load_iris()
    X = iris.data
    y = iris.target

    # add nan and inf value to X
    X[0][0] = np.NaN
    X[0][1] = np.Inf

    clf = MockClassifier()
    if cv is not None:
        rfe = RFECV(estimator=clf, cv=cv)
    else:
        rfe = RFE(estimator=clf)
    rfe.fit(X, y)
    rfe.transform(X)
コード例 #6
0
ファイル: test_rfe.py プロジェクト: ivohashamov/hackaTUM
def test_rfecv_verbose_output():
    # Check verbose=1 is producing an output.
    from io import StringIO
    import sys
    sys.stdout = StringIO()

    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = list(iris.target)

    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, verbose=1)
    rfecv.fit(X, y)

    verbose_output = sys.stdout
    verbose_output.seek(0)
    assert len(verbose_output.readline()) > 0
コード例 #7
0
ファイル: test_rfe.py プロジェクト: ivohashamov/hackaTUM
def test_rfecv_grid_scores_size():
    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = list(iris.target)  # regression test: list should be supported

    # Non-regression test for varying combinations of step and
    # min_features_to_select.
    for step, min_features_to_select in [[2, 1], [2, 2], [3, 3]]:
        rfecv = RFECV(estimator=MockClassifier(),
                      step=step,
                      min_features_to_select=min_features_to_select)
        rfecv.fit(X, y)

        score_len = np.ceil((X.shape[1] - min_features_to_select) / step) + 1
        assert len(rfecv.grid_scores_) == score_len
        assert len(rfecv.ranking_) == X.shape[1]
        assert rfecv.n_features_ >= min_features_to_select
コード例 #8
0
ファイル: test_rfe.py プロジェクト: ivohashamov/hackaTUM
def test_rfecv():
    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = list(iris.target)  # regression test: list should be supported

    # Test using the score function
    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1)
    rfecv.fit(X, y)
    # non-regression test for missing worst feature:
    assert len(rfecv.grid_scores_) == X.shape[1]
    assert len(rfecv.ranking_) == X.shape[1]
    X_r = rfecv.transform(X)

    # All the noisy variable were filtered out
    assert_array_equal(X_r, iris.data)

    # same in sparse
    rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=1)
    X_sparse = sparse.csr_matrix(X)
    rfecv_sparse.fit(X_sparse, y)
    X_r_sparse = rfecv_sparse.transform(X_sparse)
    assert_array_equal(X_r_sparse.toarray(), iris.data)

    # Test using a customized loss function
    scoring = make_scorer(zero_one_loss, greater_is_better=False)
    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=scoring)
    ignore_warnings(rfecv.fit)(X, y)
    X_r = rfecv.transform(X)
    assert_array_equal(X_r, iris.data)

    # Test using a scorer
    scorer = get_scorer('accuracy')
    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=scorer)
    rfecv.fit(X, y)
    X_r = rfecv.transform(X)
    assert_array_equal(X_r, iris.data)

    # Test fix on grid_scores
    def test_scorer(estimator, X, y):
        return 1.0

    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=test_scorer)
    rfecv.fit(X, y)
    assert_array_equal(rfecv.grid_scores_, np.ones(len(rfecv.grid_scores_)))
    # In the event of cross validation score ties, the expected behavior of
    # RFECV is to return the FEWEST features that maximize the CV score.
    # Because test_scorer always returns 1.0 in this example, RFECV should
    # reduce the dimensionality to a single feature (i.e. n_features_ = 1)
    assert rfecv.n_features_ == 1

    # Same as the first two tests, but with step=2
    rfecv = RFECV(estimator=SVC(kernel="linear"), step=2)
    rfecv.fit(X, y)
    assert len(rfecv.grid_scores_) == 6
    assert len(rfecv.ranking_) == X.shape[1]
    X_r = rfecv.transform(X)
    assert_array_equal(X_r, iris.data)

    rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=2)
    X_sparse = sparse.csr_matrix(X)
    rfecv_sparse.fit(X_sparse, y)
    X_r_sparse = rfecv_sparse.transform(X_sparse)
    assert_array_equal(X_r_sparse.toarray(), iris.data)

    # Verifying that steps < 1 don't blow up.
    rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=.2)
    X_sparse = sparse.csr_matrix(X)
    rfecv_sparse.fit(X_sparse, y)
    X_r_sparse = rfecv_sparse.transform(X_sparse)
    assert_array_equal(X_r_sparse.toarray(), iris.data)