def test_imputation_error_sparse_0(strategy): # check that error are raised when missing_values = 0 and input is sparse X = np.ones((3, 5)) X[0] = 0 X = sparse.csc_matrix(X) imputer = SimpleImputer(strategy=strategy, missing_values=0) with pytest.raises(ValueError, match="Provide a dense array"): imputer.fit(X) imputer.fit(X.toarray()) with pytest.raises(ValueError, match="Provide a dense array"): imputer.transform(X)
def test_iterative_imputer_missing_at_transform(strategy): rng = np.random.RandomState(0) n = 100 d = 10 X_train = rng.randint(low=0, high=3, size=(n, d)) X_test = rng.randint(low=0, high=3, size=(n, d)) X_train[:, 0] = 1 # definitely no missing values in 0th column X_test[0, 0] = 0 # definitely missing value in 0th column imputer = IterativeImputer(missing_values=0, max_iter=1, initial_strategy=strategy, random_state=rng).fit(X_train) initial_imputer = SimpleImputer(missing_values=0, strategy=strategy).fit(X_train) # if there were no missing values at time of fit, then imputer will # only use the initial imputer for that feature at transform assert_allclose(imputer.transform(X_test)[:, 0], initial_imputer.transform(X_test)[:, 0])
def _check_statistics(X, X_true, strategy, statistics, missing_values): """Utility function for testing imputation for a given strategy. Test with dense and sparse arrays Check that: - the statistics (mean, median, mode) are correct - the missing values are imputed correctly""" err_msg = "Parameters: strategy = %s, missing_values = %s, " \ "sparse = {0}" % (strategy, missing_values) assert_ae = assert_array_equal if X.dtype.kind == 'f' or X_true.dtype.kind == 'f': assert_ae = assert_array_almost_equal # Normal matrix imputer = SimpleImputer(missing_values, strategy=strategy) X_trans = imputer.fit(X).transform(X.copy()) assert_ae(imputer.statistics_, statistics, err_msg=err_msg.format(False)) assert_ae(X_trans, X_true, err_msg=err_msg.format(False)) # Sparse matrix imputer = SimpleImputer(missing_values, strategy=strategy) imputer.fit(sparse.csc_matrix(X)) X_trans = imputer.transform(sparse.csc_matrix(X.copy())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_ae(imputer.statistics_, statistics, err_msg=err_msg.format(True)) assert_ae(X_trans, X_true, err_msg=err_msg.format(True))