def test_ovr_partial_fit_exceptions(): ovr = OneVsRestClassifier(MultinomialNB()) X = np.abs(np.random.randn(14, 2)) y = [1, 1, 1, 1, 2, 3, 3, 0, 0, 2, 3, 1, 2, 3] ovr.partial_fit(X[:7], y[:7], np.unique(y)) # A new class value which was not in the first call of partial_fit # It should raise ValueError y1 = [5] + y[7:-1] assert_raises_regexp(ValueError, r"Mini-batch contains \[.+\] while " r"classes must be subset of \[.+\]", ovr.partial_fit, X=X[7:], y=y1)
def test_ovr_partial_fit(): # Test if partial_fit is working as intended X, y = shuffle(iris.data, iris.target, random_state=0) ovr = OneVsRestClassifier(MultinomialNB()) ovr.partial_fit(X[:100], y[:100], np.unique(y)) ovr.partial_fit(X[100:], y[100:]) pred = ovr.predict(X) ovr2 = OneVsRestClassifier(MultinomialNB()) pred2 = ovr2.fit(X, y).predict(X) assert_almost_equal(pred, pred2) assert len(ovr.estimators_) == len(np.unique(y)) assert np.mean(y == pred) > 0.65 # Test when mini batches doesn't have all classes # with SGDClassifier X = np.abs(np.random.randn(14, 2)) y = [1, 1, 1, 1, 2, 3, 3, 0, 0, 2, 3, 1, 2, 3] ovr = OneVsRestClassifier(SGDClassifier(max_iter=1, tol=None, shuffle=False, random_state=0)) ovr.partial_fit(X[:7], y[:7], np.unique(y)) ovr.partial_fit(X[7:], y[7:]) pred = ovr.predict(X) ovr1 = OneVsRestClassifier(SGDClassifier(max_iter=1, tol=None, shuffle=False, random_state=0)) pred1 = ovr1.fit(X, y).predict(X) assert np.mean(pred == y) == np.mean(pred1 == y) # test partial_fit only exists if estimator has it: ovr = OneVsRestClassifier(SVC()) assert not hasattr(ovr, "partial_fit")