def test_singleton_class(): X = iris_data y = iris_target # one singleton class singleton_class = 1 ind_singleton, = np.where(y == singleton_class) y[ind_singleton] = 2 y[ind_singleton[0]] = singleton_class nca = NeighborhoodComponentsAnalysis(max_iter=30) nca.fit(X, y) # One non-singleton class ind_1, = np.where(y == 1) ind_2, = np.where(y == 2) y[ind_1] = 0 y[ind_1[0]] = 1 y[ind_2] = 0 y[ind_2[0]] = 2 nca = NeighborhoodComponentsAnalysis(max_iter=30) nca.fit(X, y) # Only singleton classes ind_0, = np.where(y == 0) ind_1, = np.where(y == 1) ind_2, = np.where(y == 2) X = X[[ind_0[0], ind_1[0], ind_2[0]]] y = y[[ind_0[0], ind_1[0], ind_2[0]]] nca = NeighborhoodComponentsAnalysis(init='identity', max_iter=30) nca.fit(X, y) assert_array_equal(X, nca.transform(X))
def test_one_class(): X = iris_data[iris_target == 0] y = iris_target[iris_target == 0] nca = NeighborhoodComponentsAnalysis(max_iter=30, n_components=X.shape[1], init='identity') nca.fit(X, y) assert_array_equal(X, nca.transform(X))
def test_simple_example(): """Test on a simple example. Puts four points in the input space where the opposite labels points are next to each other. After transform the samples from the same class should be next to each other. """ X = np.array([[0, 0], [0, 1], [2, 0], [2, 1]]) y = np.array([1, 0, 1, 0]) nca = NeighborhoodComponentsAnalysis(n_components=2, init='identity', random_state=42) nca.fit(X, y) X_t = nca.transform(X) assert_array_equal(pairwise_distances(X_t).argsort()[:, 1], np.array([2, 3, 0, 1]))