コード例 #1
0
ファイル: test_bagging.py プロジェクト: ivohashamov/hackaTUM
def test_oob_score_regression():
    # Check that oob prediction is a good estimation of the generalization
    # error.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data,
                                                        boston.target,
                                                        random_state=rng)

    clf = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                           n_estimators=50,
                           bootstrap=True,
                           oob_score=True,
                           random_state=rng).fit(X_train, y_train)

    test_score = clf.score(X_test, y_test)

    assert abs(test_score - clf.oob_score_) < 0.1

    # Test with few estimators
    assert_warns(
        UserWarning,
        BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                         n_estimators=1,
                         bootstrap=True,
                         oob_score=True,
                         random_state=rng).fit, X_train, y_train)
コード例 #2
0
ファイル: test_bagging.py プロジェクト: ivohashamov/hackaTUM
def test_bagging_regressor_with_missing_inputs():
    # Check that BaggingRegressor can accept X with missing/infinite data
    X = np.array([
        [1, 3, 5],
        [2, None, 6],
        [2, np.nan, 6],
        [2, np.inf, 6],
        [2, np.NINF, 6],
    ])
    y_values = [
        np.array([2, 3, 3, 3, 3]),
        np.array([
            [2, 1, 9],
            [3, 6, 8],
            [3, 6, 8],
            [3, 6, 8],
            [3, 6, 8],
        ])
    ]
    for y in y_values:
        regressor = DecisionTreeRegressor()
        pipeline = make_pipeline(FunctionTransformer(replace), regressor)
        pipeline.fit(X, y).predict(X)
        bagging_regressor = BaggingRegressor(pipeline)
        y_hat = bagging_regressor.fit(X, y).predict(X)
        assert y.shape == y_hat.shape

        # Verify that exceptions can be raised by wrapper regressor
        regressor = DecisionTreeRegressor()
        pipeline = make_pipeline(regressor)
        assert_raises(ValueError, pipeline.fit, X, y)
        bagging_regressor = BaggingRegressor(pipeline)
        assert_raises(ValueError, bagging_regressor.fit, X, y)
コード例 #3
0
def test_ovr_ovo_regressor():
    # test that ovr and ovo work on regressors which don't have a decision_
    # function
    ovr = OneVsRestClassifier(DecisionTreeRegressor())
    pred = ovr.fit(iris.data, iris.target).predict(iris.data)
    assert len(ovr.estimators_) == n_classes
    assert_array_equal(np.unique(pred), [0, 1, 2])
    # we are doing something sensible
    assert np.mean(pred == iris.target) > .9

    ovr = OneVsOneClassifier(DecisionTreeRegressor())
    pred = ovr.fit(iris.data, iris.target).predict(iris.data)
    assert len(ovr.estimators_) == n_classes * (n_classes - 1) / 2
    assert_array_equal(np.unique(pred), [0, 1, 2])
    # we are doing something sensible
    assert np.mean(pred == iris.target) > .9
コード例 #4
0
ファイル: test_bagging.py プロジェクト: ivohashamov/hackaTUM
def test_bootstrap_features():
    # Test that bootstrapping features may generate duplicate features.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data,
                                                        boston.target,
                                                        random_state=rng)

    ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                                max_features=1.0,
                                bootstrap_features=False,
                                random_state=rng).fit(X_train, y_train)

    for features in ensemble.estimators_features_:
        assert boston.data.shape[1] == np.unique(features).shape[0]

    ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                                max_features=1.0,
                                bootstrap_features=True,
                                random_state=rng).fit(X_train, y_train)

    for features in ensemble.estimators_features_:
        assert boston.data.shape[1] > np.unique(features).shape[0]
コード例 #5
0
ファイル: test_export.py プロジェクト: ivohashamov/hackaTUM
def test_friedman_mse_in_graphviz():
    clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0)
    clf.fit(X, y)
    dot_data = StringIO()
    export_graphviz(clf, out_file=dot_data)

    clf = GradientBoostingClassifier(n_estimators=2, random_state=0)
    clf.fit(X, y)
    for estimator in clf.estimators_:
        export_graphviz(estimator[0], out_file=dot_data)

    for finding in finditer(r"\[.*?samples.*?\]", dot_data.getvalue()):
        assert "friedman_mse" in finding.group()
コード例 #6
0
ファイル: test_bagging.py プロジェクト: ivohashamov/hackaTUM
def test_bootstrap_samples():
    # Test that bootstrapping samples generate non-perfect base estimators.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data,
                                                        boston.target,
                                                        random_state=rng)

    base_estimator = DecisionTreeRegressor().fit(X_train, y_train)

    # without bootstrap, all trees are perfect on the training set
    ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                                max_samples=1.0,
                                bootstrap=False,
                                random_state=rng).fit(X_train, y_train)

    assert (base_estimator.score(X_train,
                                 y_train) == ensemble.score(X_train, y_train))

    # with bootstrap, trees are no longer perfect on the training set
    ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                                max_samples=1.0,
                                bootstrap=True,
                                random_state=rng).fit(X_train, y_train)

    assert (base_estimator.score(X_train, y_train) > ensemble.score(
        X_train, y_train))

    # check that each sampling correspond to a complete bootstrap resample.
    # the size of each bootstrap should be the same as the input data but
    # the data should be different (checked using the hash of the data).
    ensemble = BaggingRegressor(base_estimator=DummySizeEstimator(),
                                bootstrap=True).fit(X_train, y_train)
    training_hash = []
    for estimator in ensemble.estimators_:
        assert estimator.training_size_ == X_train.shape[0]
        training_hash.append(estimator.training_hash_)
    assert len(set(training_hash)) == len(training_hash)
コード例 #7
0
def test_thresholded_scorers():
    # Test scorers that take thresholds.
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = LogisticRegression(random_state=0)
    clf.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.decision_function(X_test))
    score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])
    assert_almost_equal(score1, score2)
    assert_almost_equal(score1, score3)

    logscore = get_scorer('neg_log_loss')(clf, X_test, y_test)
    logloss = log_loss(y_test, clf.predict_proba(X_test))
    assert_almost_equal(-logscore, logloss)

    # same for an estimator without decision_function
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])
    assert_almost_equal(score1, score2)

    # test with a regressor (no decision_function)
    reg = DecisionTreeRegressor()
    reg.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(reg, X_test, y_test)
    score2 = roc_auc_score(y_test, reg.predict(X_test))
    assert_almost_equal(score1, score2)

    # Test that an exception is raised on more than two classes
    X, y = make_blobs(random_state=0, centers=3)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf.fit(X_train, y_train)
    with pytest.raises(ValueError, match="multiclass format is not supported"):
        get_scorer('roc_auc')(clf, X_test, y_test)

    # test error is raised with a single class present in model
    # (predict_proba shape is not suitable for binary auc)
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = DecisionTreeClassifier()
    clf.fit(X_train, np.zeros_like(y_train))
    with pytest.raises(ValueError, match="need classifier with two classes"):
        get_scorer('roc_auc')(clf, X_test, y_test)

    # for proba scorers
    with pytest.raises(ValueError, match="need classifier with two classes"):
        get_scorer('neg_log_loss')(clf, X_test, y_test)
コード例 #8
0
def _make_estimators(X_train, y_train, y_ml_train):
    # Make estimators that make sense to test various scoring methods
    sensible_regr = DecisionTreeRegressor(random_state=0)
    # some of the regressions scorers require strictly positive input.
    sensible_regr.fit(X_train, y_train + 1)
    sensible_clf = DecisionTreeClassifier(random_state=0)
    sensible_clf.fit(X_train, y_train)
    sensible_ml_clf = DecisionTreeClassifier(random_state=0)
    sensible_ml_clf.fit(X_train, y_ml_train)
    return dict(
        [(name, sensible_regr) for name in REGRESSION_SCORERS] +
        [(name, sensible_clf) for name in CLF_SCORERS] +
        [(name, sensible_clf) for name in CLUSTER_SCORERS] +
        [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS]
    )
コード例 #9
0
ファイル: test_bagging.py プロジェクト: ivohashamov/hackaTUM
def test_parallel_regression():
    # Check parallel regression.
    rng = check_random_state(0)

    X_train, X_test, y_train, y_test = train_test_split(boston.data,
                                                        boston.target,
                                                        random_state=rng)

    ensemble = BaggingRegressor(DecisionTreeRegressor(),
                                n_jobs=3,
                                random_state=0).fit(X_train, y_train)

    ensemble.set_params(n_jobs=1)
    y1 = ensemble.predict(X_test)
    ensemble.set_params(n_jobs=2)
    y2 = ensemble.predict(X_test)
    assert_array_almost_equal(y1, y2)

    ensemble = BaggingRegressor(DecisionTreeRegressor(),
                                n_jobs=1,
                                random_state=0).fit(X_train, y_train)

    y3 = ensemble.predict(X_test)
    assert_array_almost_equal(y1, y3)
コード例 #10
0
def test_gridsearch():
    # Check that base trees can be grid-searched.
    # AdaBoost classification
    boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier())
    parameters = {
        'n_estimators': (1, 2),
        'base_estimator__max_depth': (1, 2),
        'algorithm': ('SAMME', 'SAMME.R')
    }
    clf = GridSearchCV(boost, parameters)
    clf.fit(iris.data, iris.target)

    # AdaBoost regression
    boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(),
                              random_state=0)
    parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)}
    clf = GridSearchCV(boost, parameters)
    clf.fit(boston.data, boston.target)
コード例 #11
0
ファイル: test_bagging.py プロジェクト: ivohashamov/hackaTUM
def test_base_estimator():
    # Check base_estimator and its default values.
    rng = check_random_state(0)

    # Classification
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)

    ensemble = BaggingClassifier(None, n_jobs=3,
                                 random_state=0).fit(X_train, y_train)

    assert isinstance(ensemble.base_estimator_, DecisionTreeClassifier)

    ensemble = BaggingClassifier(DecisionTreeClassifier(),
                                 n_jobs=3,
                                 random_state=0).fit(X_train, y_train)

    assert isinstance(ensemble.base_estimator_, DecisionTreeClassifier)

    ensemble = BaggingClassifier(Perceptron(), n_jobs=3,
                                 random_state=0).fit(X_train, y_train)

    assert isinstance(ensemble.base_estimator_, Perceptron)

    # Regression
    X_train, X_test, y_train, y_test = train_test_split(boston.data,
                                                        boston.target,
                                                        random_state=rng)

    ensemble = BaggingRegressor(None, n_jobs=3,
                                random_state=0).fit(X_train, y_train)

    assert isinstance(ensemble.base_estimator_, DecisionTreeRegressor)

    ensemble = BaggingRegressor(DecisionTreeRegressor(),
                                n_jobs=3,
                                random_state=0).fit(X_train, y_train)

    assert isinstance(ensemble.base_estimator_, DecisionTreeRegressor)

    ensemble = BaggingRegressor(SVR(), n_jobs=3,
                                random_state=0).fit(X_train, y_train)
    assert isinstance(ensemble.base_estimator_, SVR)
コード例 #12
0
ファイル: test_export.py プロジェクト: ivohashamov/hackaTUM
def test_precision():

    rng_reg = RandomState(2)
    rng_clf = RandomState(8)
    for X, y, clf in zip(
            (rng_reg.random_sample((5, 2)),
             rng_clf.random_sample((1000, 4))),
            (rng_reg.random_sample((5, )),
             rng_clf.randint(2, size=(1000, ))),
            (DecisionTreeRegressor(criterion="friedman_mse", random_state=0,
                                   max_depth=1),
             DecisionTreeClassifier(max_depth=1, random_state=0))):

        clf.fit(X, y)
        for precision in (4, 3):
            dot_data = export_graphviz(clf, out_file=None, precision=precision,
                                       proportion=True)

            # With the current random state, the impurity and the threshold
            # will have the number of precision set in the export_graphviz
            # function. We will check the number of precision with a strict
            # equality. The value reported will have only 2 precision and
            # therefore, only a less equal comparison will be done.

            # check value
            for finding in finditer(r"value = \d+\.\d+", dot_data):
                assert (
                    len(search(r"\.\d+", finding.group()).group()) <=
                    precision + 1)
            # check impurity
            if is_classifier(clf):
                pattern = r"gini = \d+\.\d+"
            else:
                pattern = r"friedman_mse = \d+\.\d+"

            # check impurity
            for finding in finditer(pattern, dot_data):
                assert (len(search(r"\.\d+", finding.group()).group()) ==
                             precision + 1)
            # check threshold
            for finding in finditer(r"<= \d+\.\d+", dot_data):
                assert (len(search(r"\.\d+", finding.group()).group()) ==
                             precision + 1)
コード例 #13
0
def test_score_sample_weight():

    rng = np.random.RandomState(0)

    # test both ClassifierMixin and RegressorMixin
    estimators = [
        DecisionTreeClassifier(max_depth=2),
        DecisionTreeRegressor(max_depth=2)
    ]
    sets = [datasets.load_iris(), datasets.load_boston()]

    for est, ds in zip(estimators, sets):
        est.fit(ds.data, ds.target)
        # generate random sample weights
        sample_weight = rng.randint(1, 10, size=len(ds.target))
        # check that the score with and without sample weights are different
        assert (est.score(ds.data, ds.target) != est.score(
            ds.data, ds.target,
            sample_weight=sample_weight)), ("Unweighted and weighted scores "
                                            "are unexpectedly equal")
コード例 #14
0
def test_errors(pyplot):
    X, y_multiclass = make_classification(n_classes=3,
                                          n_samples=50,
                                          n_informative=3,
                                          random_state=0)
    y_binary = y_multiclass == 0

    # Unfitted classifer
    binary_clf = DecisionTreeClassifier()
    with pytest.raises(NotFittedError):
        plot_precision_recall_curve(binary_clf, X, y_binary)
    binary_clf.fit(X, y_binary)

    multi_clf = DecisionTreeClassifier().fit(X, y_multiclass)

    # Fitted multiclass classifier with binary data
    msg = "DecisionTreeClassifier should be a binary classifier"
    with pytest.raises(ValueError, match=msg):
        plot_precision_recall_curve(multi_clf, X, y_binary)

    reg = DecisionTreeRegressor().fit(X, y_multiclass)
    msg = "DecisionTreeRegressor should be a binary classifier"
    with pytest.raises(ValueError, match=msg):
        plot_precision_recall_curve(reg, X, y_binary)
コード例 #15
0
ファイル: test_bagging.py プロジェクト: ivohashamov/hackaTUM
def test_regression():
    # Check regression for various parameter settings.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data[:50],
                                                        boston.target[:50],
                                                        random_state=rng)
    grid = ParameterGrid({
        "max_samples": [0.5, 1.0],
        "max_features": [0.5, 1.0],
        "bootstrap": [True, False],
        "bootstrap_features": [True, False]
    })

    for base_estimator in [
            None,
            DummyRegressor(),
            DecisionTreeRegressor(),
            KNeighborsRegressor(),
            SVR()
    ]:
        for params in grid:
            BaggingRegressor(base_estimator=base_estimator,
                             random_state=rng,
                             **params).fit(X_train, y_train).predict(X_test)
コード例 #16
0
ファイル: test_export.py プロジェクト: ivohashamov/hackaTUM
def test_export_text():
    clf = DecisionTreeClassifier(max_depth=2, random_state=0)
    clf.fit(X, y)

    expected_report = dedent("""
    |--- feature_1 <= 0.00
    |   |--- class: -1
    |--- feature_1 >  0.00
    |   |--- class: 1
    """).lstrip()

    assert export_text(clf) == expected_report
    # testing that leaves at level 1 are not truncated
    assert export_text(clf, max_depth=0) == expected_report
    # testing that the rest of the tree is truncated
    assert export_text(clf, max_depth=10) == expected_report

    expected_report = dedent("""
    |--- b <= 0.00
    |   |--- class: -1
    |--- b >  0.00
    |   |--- class: 1
    """).lstrip()
    assert export_text(clf, feature_names=['a', 'b']) == expected_report

    expected_report = dedent("""
    |--- feature_1 <= 0.00
    |   |--- weights: [3.00, 0.00] class: -1
    |--- feature_1 >  0.00
    |   |--- weights: [0.00, 3.00] class: 1
    """).lstrip()
    assert export_text(clf, show_weights=True) == expected_report

    expected_report = dedent("""
    |- feature_1 <= 0.00
    | |- class: -1
    |- feature_1 >  0.00
    | |- class: 1
    """).lstrip()
    assert export_text(clf, spacing=1) == expected_report

    X_l = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, 1]]
    y_l = [-1, -1, -1, 1, 1, 1, 2]
    clf = DecisionTreeClassifier(max_depth=4, random_state=0)
    clf.fit(X_l, y_l)
    expected_report = dedent("""
    |--- feature_1 <= 0.00
    |   |--- class: -1
    |--- feature_1 >  0.00
    |   |--- truncated branch of depth 2
    """).lstrip()
    assert export_text(clf, max_depth=0) == expected_report

    X_mo = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
    y_mo = [[-1, -1], [-1, -1], [-1, -1], [1, 1], [1, 1], [1, 1]]

    reg = DecisionTreeRegressor(max_depth=2, random_state=0)
    reg.fit(X_mo, y_mo)

    expected_report = dedent("""
    |--- feature_1 <= 0.0
    |   |--- value: [-1.0, -1.0]
    |--- feature_1 >  0.0
    |   |--- value: [1.0, 1.0]
    """).lstrip()
    assert export_text(reg, decimals=1) == expected_report
    assert export_text(reg, decimals=1, show_weights=True) == expected_report

    X_single = [[-2], [-1], [-1], [1], [1], [2]]
    reg = DecisionTreeRegressor(max_depth=2, random_state=0)
    reg.fit(X_single, y_mo)

    expected_report = dedent("""
    |--- first <= 0.0
    |   |--- value: [-1.0, -1.0]
    |--- first >  0.0
    |   |--- value: [1.0, 1.0]
    """).lstrip()
    assert export_text(reg, decimals=1,
                       feature_names=['first']) == expected_report
    assert export_text(reg, decimals=1, show_weights=True,
                       feature_names=['first']) == expected_report
コード例 #17
0
ファイル: test_export.py プロジェクト: ivohashamov/hackaTUM
def test_graphviz_toy():
    # Check correctness of export_graphviz
    clf = DecisionTreeClassifier(max_depth=3,
                                 min_samples_split=2,
                                 criterion="gini",
                                 random_state=2)
    clf.fit(X, y)

    # Test export code
    contents1 = export_graphviz(clf, out_file=None)
    contents2 = 'digraph Tree {\n' \
                'node [shape=box] ;\n' \
                '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \
                'value = [3, 3]"] ;\n' \
                '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \
                '0 -> 1 [labeldistance=2.5, labelangle=45, ' \
                'headlabel="True"] ;\n' \
                '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \
                '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \
                'headlabel="False"] ;\n' \
                '}'

    assert contents1 == contents2

    # Test with feature_names
    contents1 = export_graphviz(clf, feature_names=["feature0", "feature1"],
                                out_file=None)
    contents2 = 'digraph Tree {\n' \
                'node [shape=box] ;\n' \
                '0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \
                'value = [3, 3]"] ;\n' \
                '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \
                '0 -> 1 [labeldistance=2.5, labelangle=45, ' \
                'headlabel="True"] ;\n' \
                '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \
                '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \
                'headlabel="False"] ;\n' \
                '}'

    assert contents1 == contents2

    # Test with class_names
    contents1 = export_graphviz(clf, class_names=["yes", "no"], out_file=None)
    contents2 = 'digraph Tree {\n' \
                'node [shape=box] ;\n' \
                '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \
                'value = [3, 3]\\nclass = yes"] ;\n' \
                '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n' \
                'class = yes"] ;\n' \
                '0 -> 1 [labeldistance=2.5, labelangle=45, ' \
                'headlabel="True"] ;\n' \
                '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n' \
                'class = no"] ;\n' \
                '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \
                'headlabel="False"] ;\n' \
                '}'

    assert contents1 == contents2

    # Test plot_options
    contents1 = export_graphviz(clf, filled=True, impurity=False,
                                proportion=True, special_characters=True,
                                rounded=True, out_file=None)
    contents2 = 'digraph Tree {\n' \
                'node [shape=box, style="filled, rounded", color="black", ' \
                'fontname=helvetica] ;\n' \
                'edge [fontname=helvetica] ;\n' \
                '0 [label=<X<SUB>0</SUB> &le; 0.0<br/>samples = 100.0%<br/>' \
                'value = [0.5, 0.5]>, fillcolor="#ffffff"] ;\n' \
                '1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, ' \
                'fillcolor="#e58139"] ;\n' \
                '0 -> 1 [labeldistance=2.5, labelangle=45, ' \
                'headlabel="True"] ;\n' \
                '2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, ' \
                'fillcolor="#399de5"] ;\n' \
                '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \
                'headlabel="False"] ;\n' \
                '}'

    assert contents1 == contents2

    # Test max_depth
    contents1 = export_graphviz(clf, max_depth=0,
                                class_names=True, out_file=None)
    contents2 = 'digraph Tree {\n' \
                'node [shape=box] ;\n' \
                '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \
                'value = [3, 3]\\nclass = y[0]"] ;\n' \
                '1 [label="(...)"] ;\n' \
                '0 -> 1 ;\n' \
                '2 [label="(...)"] ;\n' \
                '0 -> 2 ;\n' \
                '}'

    assert contents1 == contents2

    # Test max_depth with plot_options
    contents1 = export_graphviz(clf, max_depth=0, filled=True,
                                out_file=None, node_ids=True)
    contents2 = 'digraph Tree {\n' \
                'node [shape=box, style="filled", color="black"] ;\n' \
                '0 [label="node #0\\nX[0] <= 0.0\\ngini = 0.5\\n' \
                'samples = 6\\nvalue = [3, 3]", fillcolor="#ffffff"] ;\n' \
                '1 [label="(...)", fillcolor="#C0C0C0"] ;\n' \
                '0 -> 1 ;\n' \
                '2 [label="(...)", fillcolor="#C0C0C0"] ;\n' \
                '0 -> 2 ;\n' \
                '}'

    assert contents1 == contents2

    # Test multi-output with weighted samples
    clf = DecisionTreeClassifier(max_depth=2,
                                 min_samples_split=2,
                                 criterion="gini",
                                 random_state=2)
    clf = clf.fit(X, y2, sample_weight=w)

    contents1 = export_graphviz(clf, filled=True,
                                impurity=False, out_file=None)
    contents2 = 'digraph Tree {\n' \
                'node [shape=box, style="filled", color="black"] ;\n' \
                '0 [label="X[0] <= 0.0\\nsamples = 6\\n' \
                'value = [[3.0, 1.5, 0.0]\\n' \
                '[3.0, 1.0, 0.5]]", fillcolor="#ffffff"] ;\n' \
                '1 [label="samples = 3\\nvalue = [[3, 0, 0]\\n' \
                '[3, 0, 0]]", fillcolor="#e58139"] ;\n' \
                '0 -> 1 [labeldistance=2.5, labelangle=45, ' \
                'headlabel="True"] ;\n' \
                '2 [label="X[0] <= 1.5\\nsamples = 3\\n' \
                'value = [[0.0, 1.5, 0.0]\\n' \
                '[0.0, 1.0, 0.5]]", fillcolor="#f1bd97"] ;\n' \
                '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \
                'headlabel="False"] ;\n' \
                '3 [label="samples = 2\\nvalue = [[0, 1, 0]\\n' \
                '[0, 1, 0]]", fillcolor="#e58139"] ;\n' \
                '2 -> 3 ;\n' \
                '4 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n' \
                '[0.0, 0.0, 0.5]]", fillcolor="#e58139"] ;\n' \
                '2 -> 4 ;\n' \
                '}'

    assert contents1 == contents2

    # Test regression output with plot_options
    clf = DecisionTreeRegressor(max_depth=3,
                                min_samples_split=2,
                                criterion="mse",
                                random_state=2)
    clf.fit(X, y)

    contents1 = export_graphviz(clf, filled=True, leaves_parallel=True,
                                out_file=None, rotate=True, rounded=True)
    contents2 = 'digraph Tree {\n' \
                'node [shape=box, style="filled, rounded", color="black", ' \
                'fontname=helvetica] ;\n' \
                'graph [ranksep=equally, splines=polyline] ;\n' \
                'edge [fontname=helvetica] ;\n' \
                'rankdir=LR ;\n' \
                '0 [label="X[0] <= 0.0\\nmse = 1.0\\nsamples = 6\\n' \
                'value = 0.0", fillcolor="#f2c09c"] ;\n' \
                '1 [label="mse = 0.0\\nsamples = 3\\nvalue = -1.0", ' \
                'fillcolor="#ffffff"] ;\n' \
                '0 -> 1 [labeldistance=2.5, labelangle=-45, ' \
                'headlabel="True"] ;\n' \
                '2 [label="mse = 0.0\\nsamples = 3\\nvalue = 1.0", ' \
                'fillcolor="#e58139"] ;\n' \
                '0 -> 2 [labeldistance=2.5, labelangle=45, ' \
                'headlabel="False"] ;\n' \
                '{rank=same ; 0} ;\n' \
                '{rank=same ; 1; 2} ;\n' \
                '}'

    assert contents1 == contents2

    # Test classifier with degraded learning set
    clf = DecisionTreeClassifier(max_depth=3)
    clf.fit(X, y_degraded)

    contents1 = export_graphviz(clf, filled=True, out_file=None)
    contents2 = 'digraph Tree {\n' \
                'node [shape=box, style="filled", color="black"] ;\n' \
                '0 [label="gini = 0.0\\nsamples = 6\\nvalue = 6.0", ' \
                'fillcolor="#ffffff"] ;\n' \
                '}'
コード例 #18
0
ファイル: test_voting.py プロジェクト: ivohashamov/hackaTUM
    # regression test for
    # https://github.com/scikit-learn/scikit-learn/issues/13777
    voter = clone(voter)
    voter.fit(X, y, sample_weight=np.ones(y.shape))
    voter.set_params(lr=drop)
    with pytest.warns(None) as record:
        voter.fit(X, y, sample_weight=np.ones(y.shape))
    assert record if drop is None else not record
    y_pred = voter.predict(X)
    assert y_pred.shape == y.shape


@pytest.mark.parametrize("estimator", [
    VotingRegressor(estimators=[(
        'lr',
        LinearRegression()), ('tree', DecisionTreeRegressor(random_state=0))]),
    VotingClassifier(estimators=[('lr', LogisticRegression(
        random_state=0)), ('tree', DecisionTreeClassifier(random_state=0))])
],
                         ids=['VotingRegressor', 'VotingClassifier'])
def test_check_estimators_voting_estimator(estimator):
    # FIXME: to be removed when meta-estimators can specified themselves
    # their testing parameters (for required parameters).
    check_estimator(estimator)
    check_no_attributes_set_in_init(estimator.__class__.__name__, estimator)


# TODO: Remove in 0.24 when None is removed in Voting*
@pytest.mark.parametrize("Voter, BaseEstimator",
                         [(VotingClassifier, DecisionTreeClassifier),
                          (VotingRegressor, DecisionTreeRegressor)])