コード例 #1
0
 def __init__(self, concept_id=0, seed=None, noise=0, desc=None):
     self.cf = concept_id
     self.seed = seed
     self.difficulty = 0 if desc == None else desc.difficulty
     self.n_classes = 2
     # self.n_features = self.difficulty + 10
     self.n_features = 10
     self.n_centroids = self.difficulty * 5 + 15
     stream = RandomRBFGenerator(model_random_state=seed,
                                 sample_random_state=seed,
                                 n_centroids=self.n_centroids,
                                 n_classes=self.n_classes,
                                 n_features=self.n_features)
     stream.prepare_for_use()
     super().__init__(stream)
コード例 #2
0
def test_random_rbf_generator(test_path):
    stream = RandomRBFGenerator(model_random_state=99,
                                sample_random_state=50,
                                n_classes=4,
                                n_features=10,
                                n_centroids=50)
    stream.prepare_for_use()

    assert stream.n_remaining_samples() == -1

    expected_names = [
        'att_num_0', 'att_num_1', 'att_num_2', 'att_num_3', 'att_num_4',
        'att_num_5', 'att_num_6', 'att_num_7', 'att_num_8', 'att_num_9'
    ]
    assert stream.feature_names == expected_names

    expected_target_values = [0, 1, 2, 3]
    assert stream.target_values == expected_target_values

    assert stream.target_names == ['target_0']

    assert stream.n_features == 10

    assert stream.n_cat_features == 0

    assert stream.n_num_features == 10

    assert stream.n_targets == 1

    assert stream.get_data_info(
    ) == 'Random RBF Generator - 1 target(s), 4 classes, 10 features'

    assert stream.has_more_samples() is True

    assert stream.is_restartable() is True

    # Load test data corresponding to first 10 instances
    test_file = os.path.join(test_path, 'random_rbf_stream.npz')
    data = np.load(test_file)
    X_expected = data['X']
    y_expected = data['y']

    X, y = stream.next_sample()
    assert np.alltrue(X[0] == X_expected[0])
    assert np.alltrue(y[0] == y_expected[0])

    X, y = stream.last_sample()
    assert np.alltrue(X[0] == X_expected[0])
    assert np.alltrue(y[0] == y_expected[0])

    stream.restart()
    X, y = stream.next_sample(10)
    assert np.alltrue(X == X_expected)
    assert np.alltrue(y == y_expected)

    assert stream.n_targets == np.array(y).ndim

    assert stream.n_features == X.shape[1]
コード例 #3
0
ファイル: Project_2.py プロジェクト: EgeAktan/Portfolio
# In[1]:


pip install -U git+https://github.com/scikit-multiflow/scikit-multiflow


# In[1]:


from skmultiflow.data.random_rbf_generator import RandomRBFGenerator


# In[2]:


RBF = RandomRBFGenerator(n_classes=2, n_features=10)


# In[3]:


RBF.prepare_for_use()


# In[4]:


RBF_data = RBF.next_sample(10000)


# In[6]: