コード例 #1
0
 def test_basic(self):
     methods = [PageRank(), Diffusion(), Closeness(), HITS(), Harmonic()]
     for adjacency in [test_graph(), test_digraph()]:
         n = adjacency.shape[0]
         for method in methods:
             score = method.fit_transform(adjacency)
             self.assertEqual(score.shape, (n, ))
             self.assertTrue(score.min() >= 0)
コード例 #2
0
 def test_options(self):
     ward = Ward()
     ward_options = Ward(embedding_method=Spectral(3), co_cluster=True)
     for algo in [ward, ward_options]:
         for input_matrix in [test_graph(), test_digraph(), test_bigraph()]:
             dendrogram = algo.fit_transform(input_matrix)
             self.assertEqual(dendrogram.shape,
                              (input_matrix.shape[0] - 1, 4))
             if algo.co_cluster:
                 self.assertEqual(algo.dendrogram_full_.shape,
                                  (sum(input_matrix.shape) - 1, 4))
コード例 #3
0
 def test_random_projection(self):
     for algo in [RandomProjection(), RandomProjection(random_walk=True)]:
         adjacency = test_graph()
         embedding = algo.fit_transform(adjacency)
         self.assertEqual(embedding.shape[1], 2)
         adjacency = test_digraph()
         embedding = algo.fit_transform(adjacency)
         self.assertEqual(embedding.shape[1], 2)
         adjacency = test_graph_disconnect()
         embedding = algo.fit_transform(adjacency)
         self.assertEqual(embedding.shape[1], 2)
コード例 #4
0
 def test_louvain_hierarchy(self):
     louvain = LouvainNE()
     for adjacency in [
             test_graph(),
             test_graph_disconnect(),
             test_digraph()
     ]:
         self.assertTupleEqual(
             louvain.fit_transform(adjacency).shape, (10, 2))
     louvain.fit(test_bigraph())
     self.assertTupleEqual(louvain.embedding_.shape, (6, 2))
コード例 #5
0
    def test_laplacian(self):
        # regular Laplacian
        spectral = LaplacianEmbedding(self.k, normalized=False)
        embedding = spectral.fit_transform(self.adjacency)
        self.assertAlmostEqual(np.linalg.norm(embedding.mean(axis=0)), 0)

        spectral = LaplacianEmbedding(self.k, regularization=0)
        with self.assertRaises(ValueError):
            spectral.fit(test_bigraph())
        with self.assertRaises(ValueError):
            spectral.fit(test_digraph())
        with self.assertRaises(ValueError):
            spectral.fit(test_graph_disconnect())

        with self.assertWarns(Warning):
            n = self.k - 1
            spectral.fit_transform(np.ones((n, n)))
コード例 #6
0
    def test_options(self):
        for adjacency in [test_graph(), test_digraph()]:
            n = adjacency.shape[0]

            force_atlas = ForceAtlas()
            layout = force_atlas.fit_transform(adjacency)
            self.assertEqual((n, 2), layout.shape)

            force_atlas = ForceAtlas(lin_log=True)
            layout = force_atlas.fit_transform(adjacency)
            self.assertEqual((n, 2), layout.shape)

            force_atlas = ForceAtlas(approx_radius=1.)
            layout = force_atlas.fit_transform(adjacency)
            self.assertEqual((n, 2), layout.shape)

            force_atlas.fit(adjacency, pos_init=layout, n_iter=1)
コード例 #7
0
    def test_regular(self):
        # regular Laplacian
        spectral = Spectral(self.k, normalized_laplacian=False, barycenter=False, normalized=False)
        embedding = spectral.fit_transform(self.adjacency)
        self.assertAlmostEqual(np.linalg.norm(embedding.mean(axis=0)), 0)
        error = np.abs(spectral.predict(self.adjacency[1]) - embedding[1]).sum()
        self.assertAlmostEqual(error, 0)

        spectral = Spectral(self.k, normalized_laplacian=False, regularization=0, equalize=True)
        with self.assertRaises(ValueError):
            spectral.fit(test_bigraph())
        with self.assertRaises(ValueError):
            spectral.fit(test_digraph())
        with self.assertRaises(ValueError):
            spectral.fit(test_graph_disconnect())

        with self.assertWarns(Warning):
            n = self.k - 1
            spectral.fit_transform(np.ones((n, n)))