コード例 #1
0
def star(n_branches: int = 3,
         metadata: bool = False) -> Union[sparse.csr_matrix, Bunch]:
    """Star (undirected).

    Parameters
    ----------
    n_branches : int
        Number of branches.
    metadata : bool
        If ``True``, return a `Bunch` object with metadata (positions).

    Returns
    -------
    adjacency or graph : Union[sparse.csr_matrix, Bunch]
        Adjacency matrix or graph with metadata (positions).

    Example
    -------
    >>> from sknetwork.data import star
    >>> adjacency = star()
    >>> adjacency.shape
    (4, 4)
    """
    edges = [(0, i + 1) for i in range(n_branches)]
    adjacency = edgelist2adjacency(edges, undirected=True)
    if metadata:
        graph = Bunch()
        graph.adjacency = adjacency
        angles = 2 * np.pi * np.arange(n_branches) / n_branches
        graph.position = np.vstack([np.cos(angles), np.sin(angles)]).T
        return graph
    else:
        return adjacency
コード例 #2
0
def albert_barabasi(n: int = 100, degree: int = 3, undirected: bool = True, seed: Optional[int] = None) \
        -> sparse.csr_matrix:
    """Albert-Barabasi model.

    Parameters
    ----------
    n : int
        Number of nodes.
    degree : int
        Degree of incoming nodes (less than **n**).
    undirected : bool
        If ``True``, return an undirected graph.
    seed :
        Seed of the random generator (optional).

    Returns
    -------
    adjacency : sparse.csr_matrix
        Adjacency matrix.

    Example
    -------
    >>> from sknetwork.data import albert_barabasi
    >>> adjacency = albert_barabasi(30, 3)
    >>> adjacency.shape
    (30, 30)

    References
    ----------
    Albert, R., Barabási, L. (2002). `Statistical mechanics of complex networks
    <https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.74.47>`_
    Reviews of Modern Physics.
    """
    np.random.seed(seed)
    degrees = np.zeros(n, int)
    degrees[:degree] = degree - 1
    edges = [(i, j) for i in range(degree) for j in range(i)]
    for i in range(degree, n):
        neighbors = np.random.choice(i,
                                     p=degrees[:i] / degrees.sum(),
                                     size=degree,
                                     replace=False)
        degrees[neighbors] += 1
        degrees[i] = degree
        edges += [(i, j) for j in neighbors]
    return edgelist2adjacency(edges, undirected)
コード例 #3
0
 def test_adjacency(self):
     edge_list = [(1, 2), (3, 4), (1, 0), (1, 2)]
     adjacency = edgelist2adjacency(edge_list)
     self.assertEqual(adjacency.nnz, 3)
     adjacency = edgelist2adjacency(edge_list, undirected=True)
     self.assertEqual(adjacency.nnz, 6)
     adjacency = edgelist2adjacency(edge_list, weighted=False)
     self.assertEqual(np.max(adjacency.data), 1)
     edge_list = [(1, 2, 1), (3, 4, 3), (1, 0, 1), (1, 2, 2)]
     adjacency = edgelist2adjacency(edge_list)
     self.assertEqual(adjacency.nnz, 3)
     self.assertEqual(adjacency[1, 2], 3)
     adjacency = edgelist2adjacency(edge_list, undirected=True)
     self.assertEqual(adjacency.nnz, 6)
     adjacency = edgelist2adjacency(edge_list, weighted=False)
     self.assertEqual(np.max(adjacency.data), 1)
コード例 #4
0
def grid(n1: int = 10,
         n2: int = 10,
         metadata: bool = False) -> Union[sparse.csr_matrix, Bunch]:
    """Grid (undirected).

    Parameters
    ----------
    n1, n2 : int
        Grid dimension.
    metadata : bool
        If ``True``, return a `Bunch` object with metadata.

    Returns
    -------
    adjacency or graph : Union[sparse.csr_matrix, Bunch]
        Adjacency matrix or graph with metadata (positions).

    Example
    -------
    >>> from sknetwork.data import grid
    >>> adjacency = grid(10, 5)
    >>> adjacency.shape
    (50, 50)
    """
    nodes = [(i1, i2) for i1 in range(n1) for i2 in range(n2)]
    edges = [((i1, i2), (i1 + 1, i2)) for i1 in range(n1 - 1)
             for i2 in range(n2)]
    edges += [((i1, i2), (i1, i2 + 1)) for i1 in range(n1)
              for i2 in range(n2 - 1)]
    node_id = {u: i for i, u in enumerate(nodes)}
    edges = list(map(lambda edge: (node_id[edge[0]], node_id[edge[1]]), edges))
    adjacency = edgelist2adjacency(edges, undirected=True)
    if metadata:
        graph = Bunch()
        graph.adjacency = adjacency
        graph.position = np.array(nodes)
        return graph
    else:
        return adjacency