コード例 #1
0
from sklearn import datasets, cross_validation
from sknn.mlp import Classifier, Layer, Convolution


# Load the data and split it into subsets for training and testing.
digits = datasets.load_digits()
X = digits.images
y = digits.target

X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2)


# Create a neural network that uses convolution to scan the input images.
nn = Classifier(
    layers=[
        Convolution('Rectifier', channels=12, kernel_shape=(3, 3), border_mode='full'),
        Convolution('Rectifier', channels=10, kernel_shape=(3, 3), border_mode='valid'),
        Convolution('Rectifier', channels=4, kernel_shape=(3, 3), border_mode='valid'),
        Layer('Rectifier', units=64),
        Layer('Softmax')],
    learning_rate=0.002,
    valid_size=0.2,
    n_stable=10,
    verbose=True)

nn.fit(X_train, y_train)


# Determine how well it does on training data and unseen test data.
print('\nTRAIN SCORE', nn.score(X_train, y_train))
print('TEST SCORE', nn.score(X_test, y_test))
コード例 #2
0
ファイル: sknn_two.py プロジェクト: PCJohn/Walrus
X_train = img
Y_train = cat
X_test = test

print N
print X_train.shape,' -- ',X_test.shape
print Y_train.shape
print '____________'

print X_train[:5]
print Y_train[:5]
print Y_train[-5:]

nn = Classifier(
    layers=[
        Convolution("Rectifier",channels=48,kernel_shape=(5,5),pool_shape=(3,3)),
        Convolution("Rectifier",channels=96,kernel_shape=(11,11),pool_shape=(5,5)),
        Layer("Rectifier",units=128),
        Layer("Rectifier",units=128),
        Layer("Softmax")],
    learning_rate=0.001,
    verbose=True)

#train(nn, X_train, Y_train, './model', n_epoch=100, save_part=5)
#train(nn, X_train, Y_train, './skt_again', n_epoch=100, save_part=5)

#-----TESTING-----#
nn = pickle.load(open('./skt_again','r'))
print 'Network loaded'
print nn
print '--------'
コード例 #3
0
features = test.columns.tolist()
features.remove('is_train')
features.remove('Label')

# Neural Network, Stochastic Gradient Descent is sensitive to feature scaling, so it is highly recommended to scale your data.
scaler = StandardScaler()
for col in features:
    scaler.fit(list(train[col])+list(test[col]))
    train[col] = scaler.transform(train[col])
    test[col] = scaler.transform(test[col])

# Define Classifier
myNNClassifier = Classifier(
                    layers=[
                        Convolution("Rectifier", channels=16, kernel_shape=(5,5)),
                        Convolution("Rectifier", channels=16, kernel_shape=(5,5)),
                        Convolution("Rectifier", channels=16, kernel_shape=(5,5)),
                        Layer('Rectifier', units=100),
                        Layer('Softmax')],
                    learning_rate=0.01,
                    learning_rule='momentum',
                    learning_momentum=0.9,
                    batch_size=100,
                    valid_size=0.01,
                    n_stable=20,
                    n_iter=200,
                    verbose=True)

# Train
myNNClassifier.fit(np.array(train[list(features)]), train[goal])
コード例 #4
0
ファイル: main.py プロジェクト: llnns/Test2CIFAR-10
    #print '\rLoading:',i-(N_TRAIN),'/',N_TRAIN_TEST,'.',
    test_images_full_info.append(load_imgs('train/' + str(i) + '.png'))
print '\n'

#Preprossesing Test Images
log.info('Preprosseing Test images.')
ZZ = np.array(test_images_full_info)
Z = np.zeros((len(ZZ), 1, 32, 32))
for i in range(len(ZZ)):
    Z[i] = datagen.standardize(ZZ[i])
y_test = np.array(labels[N_TRAIN + 1:N_TRAIN + 1 + N_TRAIN_TEST])

log.info('Starting Classifier.')
nn = Classifier(
    layers=[
        Convolution("Rectifier", channels=64, kernel_shape=(3, 3)),
        Native(lasagne.Conv2DLayer,
               num_filters=32,
               filter_size=(3, 3),
               nonlinearity=nl.leaky_rectify),
        Native(lasagne.MaxPool2DLayer, pool_size=(2, 2)),
        Native(lasagne.DropoutLayer, p=0.25),
        Native(lasagne.Conv2DLayer,
               num_filters=64,
               filter_size=(3, 3),
               nonlinearity=nl.leaky_rectify),
        Native(lasagne.Conv2DLayer,
               num_filters=64,
               filter_size=(3, 3),
               nonlinearity=nl.leaky_rectify),
        Native(lasagne.MaxPool2DLayer, pool_size=(2, 2)),
コード例 #5
0
sys.path.append('/usr/local/lib/python2.7/dist-packages')
import numpy as np
#from sklearn import svm
from sklearn.decomposition import PCA
import pandas as pd
from sknn.mlp import Classifier,Layer
from sknn.mlp import Convolution

training = np.loadtxt('./train.csv',delimiter=',',dtype=int)
validation = np.loadtxt('./test.csv',delimiter=',',dtype=int)
labels = training[:,0]
traindata = np.delete(training,0,1)
pca = PCA()
pca.fit(traindata,labels)
pcafittrain = pca.transform(traindata)
pcafittest = pca.transform(validation)
print "pca done"

c = Classifier(layers=[Convolution("Rectifier", channels=18, pool_shape=(2,2),kernel_shape=(5,5), 
	border_mode='valid'),Layer('Rectifier', units=200),Layer('Softmax')],learning_rate=0.00001,learning_rule='nesterov',
	learning_momentum=0.9, batch_size=300, valid_size=0.0, 
	normalize='L1',n_stable=10, n_iter=10, verbose=True)

c.fit(pcafittrain,labels)
print "fitting done"
result = c.predict(pcafittest).ravel()
print "result"
print result
x = list(range(1,28001))
df = pd.DataFrame({"ImageID" : x, "Label" : result})
df.to_csv('outo.csv',index=False)