def test_y_proba_on_gunpoint(): X, y = load_gunpoint(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.1, random_state=42 ) stsf = SupervisedTimeSeriesForest(random_state=42, n_estimators=20) stsf.fit(X_train, y_train) actual = stsf.predict_proba(X_test) np.testing.assert_array_equal(actual, expected)
def test_stsf_on_power_demand(): # load power demand data X_train, y_train = load_italy_power_demand(split="train", return_X_y=True) X_test, y_test = load_italy_power_demand(split="test", return_X_y=True) indices = np.random.RandomState(0).permutation(100) # train STSF stsf = SupervisedTimeSeriesForest(random_state=0, n_estimators=20) stsf.fit(X_train, y_train) score = stsf.score(X_test.iloc[indices], y_test[indices]) assert score >= 0.92
def test_stsf_on_gunpoint(): """Test of STSF on gun point.""" # load gunpoint data X_train, y_train = load_gunpoint(split="train", return_X_y=True) X_test, y_test = load_gunpoint(split="test", return_X_y=True) indices = np.random.RandomState(0).permutation(10) stsf = SupervisedTimeSeriesForest(n_estimators=20, random_state=0) stsf.fit(X_train.iloc[indices], y_train[indices]) # assert probabilities are the same probas = stsf.predict_proba(X_test.iloc[indices]) testing.assert_array_equal(probas, stsf_gunpoint_probas)
def test_stsf_on_unit_test_data(): """Test of SupervisedTimeSeriesForest on unit test data.""" # load unit test data X_train, y_train = load_unit_test(split="train", return_X_y=True) X_test, y_test = load_unit_test(split="test", return_X_y=True) indices = np.random.RandomState(0).choice(len(y_train), 10, replace=False) # train STSF stsf = SupervisedTimeSeriesForest(n_estimators=10, random_state=0) stsf.fit(X_train, y_train) # assert probabilities are the same probas = stsf.predict_proba(X_test.iloc[indices]) testing.assert_array_equal(probas, stsf_unit_test_probas)
def StartTrain(self): train_files = glob.glob(self.lineEdit.text() + "\\*.csv") test_files = glob.glob(self.lineEdit_2.text() + "\\*.csv") train_li = [] for filename in train_files: df = pd.read_csv(filename, index_col=None, header=None,usecols=[2]) train_li.append(df) X_df = pd.concat(train_li, axis=1, ignore_index=True) X_df = X_df.T test_li = [] for filename in test_files: df = pd.read_csv(filename, index_col=None, header=None,usecols=[2]) test_li.append(df) X_df_ng = pd.concat(test_li, axis=1, ignore_index=True) X_df_ng = X_df_ng.T X_df = X_df.append(X_df_ng) X_df_tab = from_2d_array_to_nested(X_df) Y_df_ok = np.zeros(len(test_li), dtype="int32") Y_df_ng = np.ones(len(train_li), dtype="int32") Y_df = np.concatenate([Y_df_ok, Y_df_ng], 0) X_train, X_test, y_train, y_test = train_test_split(X_df_tab, Y_df, test_size= (100 - self.horizontalSlider.value()) / 100) self.tableWidget.setRowCount(0) selectedModel = self.comboBox.currentText() if(selectedModel == "RandomForestClassifier"): classifier = make_pipeline(Tabularizer(), RandomForestClassifier()) classifier.fit(X_train, y_train) self.lineEdit_5.setText(str(classifier.score(X_train, y_train))) self.lineEdit_6.setText(str(classifier.score(X_test, y_test))) for i in range(len(X_test)): row = self.tableWidget.rowCount() self.tableWidget.setRowCount(row) classifier_preds = classifier.predict(X_test.iloc[i].to_frame()) self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(classifier_preds)]) elif(selectedModel == "RocketClassifier"): rocket = RocketClassifier() rocket.fit(X_train, y_train) self.lineEdit_5.setText(str(rocket.score(X_train, y_train))) self.lineEdit_6.setText(str(rocket.score(X_test, y_test))) for i in range(len(X_test)): row = self.tableWidget.rowCount() self.tableWidget.setRowCount(row) rocket_preds = rocket.predict(X_test.iloc[i].to_frame()) self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(rocket_preds)]) elif(selectedModel == "TimeSeriesForestClassifier"): tsf = TimeSeriesForestClassifier(n_estimators=50, random_state=47) tsf.fit(X_train, y_train) self.lineEdit_5.setText(str(tsf.score(X_train, y_train))) self.lineEdit_6.setText(str(tsf.score(X_test, y_test))) for i in range(len(X_test)): row = self.tableWidget.rowCount() self.tableWidget.setRowCount(row) tsf_preds = tsf.predict(X_test.iloc[i].to_frame()) self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(tsf_preds)]) elif(selectedModel == "RandomIntervalSpectralEnsemble"): rise = RandomIntervalSpectralEnsemble(n_estimators=50, random_state=47) rise.fit(X_train, y_train) self.lineEdit_5.setText(str(rise.score(X_train, y_train))) self.lineEdit_6.setText(str(rise.score(X_test, y_test))) for i in range(len(X_test)): row = self.tableWidget.rowCount() self.tableWidget.setRowCount(row) rise_preds = rise.predict(X_test.iloc[i].to_frame()) self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(rise_preds)]) elif(selectedModel == "SupervisedTimeSeriesForest"): stsf = SupervisedTimeSeriesForest(n_estimators=50, random_state=47) stsf.fit(X_train, y_train) self.lineEdit_5.setText(str(stsf.score(X_train, y_train))) self.lineEdit_6.setText(str(stsf.score(X_test, y_test))) for i in range(len(X_test)): row = self.tableWidget.rowCount() self.tableWidget.setRowCount(row) stsf_preds = rise.predict(X_test.iloc[i].to_frame()) self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(stsf_preds)]) else: print("None")
def set_classifier(cls, resample_id=None, train_file=False): """Construct a classifier. Basic way of creating the classifier to build using the default settings. This set up is to help with batch jobs for multiple problems to facilitate easy reproducibility for use with load_and_run_classification_experiment. You can pass a classifier object instead to run_classification_experiment. Parameters ---------- cls : str String indicating which classifier you want. resample_id : int or None, default=None Classifier random seed. train_file : bool, default=False Whether a train file is being produced. Return ------ classifier : A BaseClassifier. The classifier matching the input classifier name. """ name = cls.lower() # Dictionary based if name == "boss" or name == "bossensemble": return BOSSEnsemble(random_state=resample_id) elif name == "cboss" or name == "contractableboss": return ContractableBOSS(random_state=resample_id) elif name == "tde" or name == "temporaldictionaryensemble": return TemporalDictionaryEnsemble( random_state=resample_id, save_train_predictions=train_file ) elif name == "weasel": return WEASEL(random_state=resample_id) elif name == "muse": return MUSE(random_state=resample_id) # Distance based elif name == "pf" or name == "proximityforest": return ProximityForest(random_state=resample_id) elif name == "pt" or name == "proximitytree": return ProximityTree(random_state=resample_id) elif name == "ps" or name == "proximityStump": return ProximityStump(random_state=resample_id) elif name == "dtwcv" or name == "kneighborstimeseriesclassifier": return KNeighborsTimeSeriesClassifier(distance="dtwcv") elif name == "dtw" or name == "1nn-dtw": return KNeighborsTimeSeriesClassifier(distance="dtw") elif name == "msm" or name == "1nn-msm": return KNeighborsTimeSeriesClassifier(distance="msm") elif name == "ee" or name == "elasticensemble": return ElasticEnsemble(random_state=resample_id) elif name == "shapedtw": return ShapeDTW() # Feature based elif name == "catch22": return Catch22Classifier( random_state=resample_id, estimator=RandomForestClassifier(n_estimators=500) ) elif name == "matrixprofile": return MatrixProfileClassifier(random_state=resample_id) elif name == "signature": return SignatureClassifier( random_state=resample_id, estimator=RandomForestClassifier(n_estimators=500), ) elif name == "tsfresh": return TSFreshClassifier( random_state=resample_id, estimator=RandomForestClassifier(n_estimators=500) ) elif name == "tsfresh-r": return TSFreshClassifier( random_state=resample_id, estimator=RandomForestClassifier(n_estimators=500), relevant_feature_extractor=True, ) # Hybrid elif name == "hc1" or name == "hivecotev1": return HIVECOTEV1(random_state=resample_id) elif name == "hc2" or name == "hivecotev2": return HIVECOTEV2(random_state=resample_id) # Interval based elif name == "rise" or name == "randomintervalspectralforest": return RandomIntervalSpectralEnsemble( random_state=resample_id, n_estimators=500 ) elif name == "tsf" or name == "timeseriesforestclassifier": return TimeSeriesForestClassifier(random_state=resample_id, n_estimators=500) elif name == "cif" or name == "canonicalintervalforest": return CanonicalIntervalForest(random_state=resample_id, n_estimators=500) elif name == "stsf" or name == "supervisedtimeseriesforest": return SupervisedTimeSeriesForest(random_state=resample_id, n_estimators=500) elif name == "drcif": return DrCIF( random_state=resample_id, n_estimators=500, save_transformed_data=train_file ) # Kernel based elif name == "rocket": return ROCKETClassifier(random_state=resample_id) elif name == "arsenal": return Arsenal(random_state=resample_id, save_transformed_data=train_file) # Shapelet based elif name == "stc" or name == "shapelettransformclassifier": return ShapeletTransformClassifier( random_state=resample_id, save_transformed_data=train_file ) elif name == "mrseql" or name == "mrseqlclassifier": return MrSEQLClassifier(seql_mode="fs", symrep=["sax", "sfa"]) else: raise Exception("UNKNOWN CLASSIFIER")
_reproduce_classification_unit_test(DrCIF(n_estimators=10, random_state=0)), ) _print_array( "DrCIF - BasicMotions", _reproduce_classification_basic_motions(DrCIF(n_estimators=10, random_state=0)), ) _print_array( "RandomIntervalSpectralEnsemble - UnitTest", _reproduce_classification_unit_test( RandomIntervalSpectralEnsemble(n_estimators=10, random_state=0) ), ) _print_array( "SupervisedTimeSeriesForest - UnitTest", _reproduce_classification_unit_test( SupervisedTimeSeriesForest(n_estimators=10, random_state=0) ), ) _print_array( "TimeSeriesForestClassifier - UnitTest", _reproduce_classification_unit_test( TimeSeriesForestClassifier(n_estimators=10, random_state=0) ), ) _print_array( "Arsenal - UnitTest", _reproduce_classification_unit_test( Arsenal(num_kernels=200, n_estimators=5, random_state=0) ), ) _print_array(