コード例 #1
0
ファイル: test_hivecote_v2.py プロジェクト: Piyush1729/sktime
def test_hivecote_v2_on_basic_motions():
    """Test of HIVEVOTEV2 on basic motions data."""
    # load basic motions data
    X_train, y_train = load_basic_motions(split="train", return_X_y=True)
    X_test, y_test = load_basic_motions(split="test", return_X_y=True)
    indices = np.random.RandomState(4).choice(len(y_train), 15, replace=False)

    # train HIVE-COTE v2
    hc2 = HIVECOTEV2(
        random_state=0,
        stc_params={
            "estimator": RotationForest(n_estimators=3),
            "n_shapelet_samples": 500,
            "max_shapelets": 20,
            "batch_size": 100,
        },
        drcif_params={"n_estimators": 10},
        arsenal_params={
            "num_kernels": 100,
            "n_estimators": 5
        },
        tde_params={
            "n_parameter_samples": 25,
            "max_ensemble_size": 5,
            "randomly_selected_params": 10,
        },
    )
    hc2.fit(X_train.iloc[indices], y_train[indices])

    # assert probabilities are the same
    probas = hc2.predict_proba(X_test.iloc[indices[:10]])
    testing.assert_array_equal(probas, stc_basic_motions_probas)
コード例 #2
0
ファイル: test_stc.py プロジェクト: Piyush1729/sktime
def test_stc_on_unit_test_data():
    """Test of ShapeletTransformClassifier on unit test data."""
    # load unit test data
    X_train, y_train = load_unit_test(split="train", return_X_y=True)
    X_test, y_test = load_unit_test(split="test", return_X_y=True)
    indices = np.random.RandomState(0).choice(len(y_train), 10, replace=False)

    # train STC
    stc = ShapeletTransformClassifier(
        estimator=RotationForest(n_estimators=3),
        max_shapelets=20,
        n_shapelet_samples=500,
        batch_size=100,
        random_state=0,
        save_transformed_data=True,
    )
    stc.fit(X_train, y_train)

    # assert probabilities are the same
    probas = stc.predict_proba(X_test.iloc[indices])
    testing.assert_array_equal(probas, stc_unit_test_probas)

    # test train estimate
    train_probas = stc._get_train_probs(X_train, y_train)
    train_preds = stc.classes_[np.argmax(train_probas, axis=1)]
    assert accuracy_score(y_train, train_preds) >= 0.75
コード例 #3
0
def test_hivecote_v1_on_unit_test_data():
    """Test of HIVECOTEV1 on unit test data."""
    # load unit test data
    X_train, y_train = load_unit_test(split="train", return_X_y=True)
    X_test, y_test = load_unit_test(split="test", return_X_y=True)
    indices = np.random.RandomState(0).choice(len(y_train), 10, replace=False)

    # train HIVE-COTE v1
    hc1 = HIVECOTEV1(
        random_state=0,
        stc_params={
            "estimator": RotationForest(n_estimators=3),
            "n_shapelet_samples": 500,
            "max_shapelets": 20,
            "batch_size": 100,
        },
        tsf_params={"n_estimators": 10},
        rise_params={"n_estimators": 10},
        cboss_params={
            "n_parameter_samples": 25,
            "max_ensemble_size": 5
        },
    )
    hc1.fit(X_train.iloc[indices], y_train[indices])

    # assert probabilities are the same
    probas = hc1.predict_proba(X_test.iloc[indices])
    testing.assert_array_almost_equal(probas,
                                      hivecote_v1_unit_test_probas,
                                      decimal=2)
コード例 #4
0
    def _fit(self, X, y):
        """Fit a pipeline on cases (X,y), where y is the target variable.

        Parameters
        ----------
        X : 3D np.array of shape = [n_instances, n_dimensions, series_length]
            The training data.
        y : array-like, shape = [n_instances]
            The class labels.

        Returns
        -------
        self :
            Reference to self.

        Notes
        -----
        Changes state by creating a fitted model that updates attributes
        ending in "_" and sets is_fitted flag to True.
        """
        self.n_instances_, self.n_dims_, self.series_length_ = X.shape

        self._rotf = RotationForest(
            n_estimators=self.n_estimators,
            save_transformed_data=self.save_transformed_data,
            n_jobs=self._threads_to_use,
            random_state=self.random_state,
        )
        self._tsfresh = TSFreshFeatureExtractor(
            default_fc_parameters=self.default_fc_parameters,
            n_jobs=self._threads_to_use,
            chunksize=self.chunksize,
            show_warnings=self.verbose > 1,
            disable_progressbar=self.verbose < 1,
        )

        X_t = self._tsfresh.fit_transform(X, y)
        self._rotf.fit(X_t, y)

        if self.save_transformed_data:
            self.transformed_data_ = X_t

        return self
コード例 #5
0
ファイル: _stc.py プロジェクト: Piyush1729/sktime
    def _fit(self, X, y):
        self._n_jobs = check_n_jobs(self.n_jobs)

        self.n_instances, self.n_dims, self.series_length = X.shape
        self.n_classes = np.unique(y).shape[0]
        self.classes_ = class_distribution(np.asarray(y).reshape(-1, 1))[0][0]

        if self.time_limit_in_minutes > 0:
            # contracting 2/3 transform (with 1/5 of that taken away for final
            # transform), 1/3 classifier
            third = self.time_limit_in_minutes / 3
            self._classifier_limit_in_minutes = third
            self._transform_limit_in_minutes = (third * 2) / 5 * 4
        elif self.transform_limit_in_minutes > 0:
            self._transform_limit_in_minutes = self.transform_limit_in_minutes

        self._transformer = RandomShapeletTransform(
            n_shapelet_samples=self.n_shapelet_samples,
            max_shapelets=self.max_shapelets,
            max_shapelet_length=self.max_shapelet_length,
            time_limit_in_minutes=self._transform_limit_in_minutes,
            contract_max_n_shapelet_samples=self.
            contract_max_n_shapelet_samples,
            n_jobs=self.n_jobs,
            batch_size=self.batch_size,
            random_state=self.random_state,
        )

        self._estimator = _clone_estimator(
            RotationForest() if self.estimator is None else self.estimator,
            self.random_state,
        )

        if isinstance(self._estimator, RotationForest):
            self._estimator.save_transformed_data = self.save_transformed_data

        m = getattr(self._estimator, "n_jobs", None)
        if m is not None:
            self._estimator.n_jobs = self._n_jobs

        m = getattr(self._estimator, "time_limit_in_minutes", None)
        if m is not None and self.time_limit_in_minutes > 0:
            self._estimator.time_limit_in_minutes = self._classifier_limit_in_minutes

        X_t = self._transformer.fit_transform(X, y).to_numpy()

        if self.save_transformed_data:
            self.transformed_data = X_t

        self._estimator.fit(X_t, y)
コード例 #6
0
ファイル: test_stc.py プロジェクト: AidenRushbrooke/sktime
def test_contracted_stc_on_unit_test_data():
    """Test of contracted ShapeletTransformClassifier on unit test data."""
    # load unit test data
    X_train, y_train = load_unit_test(split="train")

    # train contracted STC
    stc = ShapeletTransformClassifier(
        estimator=RotationForest(contract_max_n_estimators=3),
        max_shapelets=20,
        time_limit_in_minutes=0.25,
        contract_max_n_shapelet_samples=500,
        batch_size=100,
        random_state=0,
    )
    stc.fit(X_train, y_train)
コード例 #7
0
    def _fit(self, X, y):
        """Fit a pipeline on cases (X,y), where y is the target variable.

        Parameters
        ----------
        X : 3D np.array of shape = [n_instances, n_dimensions, series_length]
            The training data.
        y : array-like, shape = [n_instances]
            The class labels.

        Returns
        -------
        self :
            Reference to self.

        Notes
        -----
        Changes state by creating a fitted model that updates attributes
        ending in "_" and sets is_fitted flag to True.
        """
        interval_transformers = (Catch22(outlier_norm=True, replace_nans=True)
                                 if self.interval_transformers is None else
                                 self.interval_transformers)

        self._transformer = RandomIntervals(
            n_intervals=self.n_intervals,
            transformers=interval_transformers,
            random_state=self.random_state,
            n_jobs=self._threads_to_use,
        )

        self._estimator = _clone_estimator(
            RotationForest() if self.estimator is None else self.estimator,
            self.random_state,
        )

        m = getattr(self._estimator, "n_jobs", None)
        if m is not None:
            self._estimator.n_jobs = self._threads_to_use

        X_t = self._transformer.fit_transform(X, y)
        self._estimator.fit(X_t, y)

        return self
コード例 #8
0
ファイル: test_stc.py プロジェクト: Piyush1729/sktime
def test_stc_on_basic_motions():
    """Test of ShapeletTransformClassifier on basic motions data."""
    # load basic motions data
    X_train, y_train = load_basic_motions(split="train", return_X_y=True)
    X_test, y_test = load_basic_motions(split="test", return_X_y=True)
    indices = np.random.RandomState(4).choice(len(y_train), 15, replace=False)

    # train STC
    stc = ShapeletTransformClassifier(
        estimator=RotationForest(n_estimators=3),
        max_shapelets=20,
        n_shapelet_samples=500,
        batch_size=100,
        random_state=0,
    )
    stc.fit(X_train.iloc[indices], y_train[indices])

    # assert probabilities are the same
    probas = stc.predict_proba(X_test.iloc[indices[:10]])
    testing.assert_array_equal(probas, stc_basic_motions_probas)
コード例 #9
0
def test_contracted_hivecote_v2_on_unit_test_data():
    """Test of contracted HIVECOTEV2 on unit test data."""
    # load unit test data
    X_train, y_train = load_unit_test(split="train")

    # train contracted HIVE-COTE v2
    hc2 = HIVECOTEV2(
        time_limit_in_minutes=2,
        random_state=0,
        stc_params={
            "estimator": RotationForest(contract_max_n_estimators=3),
            "contract_max_n_shapelet_samples": 500,
            "max_shapelets": 20,
            "batch_size": 100,
        },
        drcif_params={"contract_max_n_estimators": 10},
        arsenal_params={"contract_max_n_estimators": 5},
        tde_params={
            "contract_max_n_parameter_samples": 10,
            "max_ensemble_size": 5,
            "randomly_selected_params": 5,
        },
    )
    hc2.fit(X_train, y_train)
コード例 #10
0
class FreshPRINCE(BaseClassifier):
    """Fresh Pipeline with RotatIoN forest Classifier.

    This classifier simply transforms the input data using the TSFresh [1]_
    transformer with comprehensive features and builds a RotationForest estimator using
    the transformed data.

    Parameters
    ----------
    default_fc_parameters : str, default="comprehensive"
        Set of TSFresh features to be extracted, options are "minimal", "efficient" or
        "comprehensive".
    n_estimators : int, default=200
        Number of estimators for the RotationForest ensemble.
    verbose : int, default=0
        Level of output printed to the console (for information only)
    n_jobs : int, default=1
        The number of jobs to run in parallel for both `fit` and `predict`.
        ``-1`` means using all processors.
    chunksize : int or None, default=None
        Number of series processed in each parallel TSFresh job, should be optimised
        for efficient parallelisation.
    random_state : int or None, default=None
        Seed for random, integer.

    Attributes
    ----------
    n_classes_ : int
        Number of classes. Extracted from the data.
    classes_ : ndarray of shape (n_classes_)
        Holds the label for each class.

    See Also
    --------
    TSFreshFeatureExtractor, TSFreshClassifier, RotationForest

    References
    ----------
    .. [1] Christ, Maximilian, et al. "Time series feature extraction on basis of
        scalable hypothesis tests (tsfresh–a python package)." Neurocomputing 307
        (2018): 72-77.
        https://www.sciencedirect.com/science/article/pii/S0925231218304843

    Examples
    --------
    >>> from sktime.classification.feature_based import FreshPRINCE
    >>> from sktime.contrib.vector_classifiers._rotation_forest import RotationForest
    >>> from sktime.datasets import load_unit_test
    >>> X_train, y_train = load_unit_test(split="train", return_X_y=True)
    >>> X_test, y_test = load_unit_test(split="test", return_X_y=True)
    >>> clf = FreshPRINCE(
    ...     default_fc_parameters="minimal",
    ...     n_estimators=10,
    ... )
    >>> clf.fit(X_train, y_train)
    FreshPRINCE(...)
    >>> y_pred = clf.predict(X_test)
    """

    _tags = {
        "capability:multivariate": True,
        "capability:multithreading": True,
        "capability:train_estimate": True,
    }

    def __init__(
        self,
        default_fc_parameters="comprehensive",
        n_estimators=200,
        save_transformed_data=False,
        verbose=0,
        n_jobs=1,
        chunksize=None,
        random_state=None,
    ):
        self.default_fc_parameters = default_fc_parameters
        self.n_estimators = n_estimators

        self.save_transformed_data = save_transformed_data
        self.verbose = verbose
        self.n_jobs = n_jobs
        self.chunksize = chunksize
        self.random_state = random_state

        self.n_instances_ = 0
        self.n_dims_ = 0
        self.series_length_ = 0
        self.transformed_data_ = []

        self._rotf = None
        self._tsfresh = None

        super(FreshPRINCE, self).__init__()

    def _fit(self, X, y):
        """Fit a pipeline on cases (X,y), where y is the target variable.

        Parameters
        ----------
        X : 3D np.array of shape = [n_instances, n_dimensions, series_length]
            The training data.
        y : array-like, shape = [n_instances]
            The class labels.

        Returns
        -------
        self :
            Reference to self.

        Notes
        -----
        Changes state by creating a fitted model that updates attributes
        ending in "_" and sets is_fitted flag to True.
        """
        self.n_instances_, self.n_dims_, self.series_length_ = X.shape

        self._rotf = RotationForest(
            n_estimators=self.n_estimators,
            save_transformed_data=self.save_transformed_data,
            n_jobs=self._threads_to_use,
            random_state=self.random_state,
        )
        self._tsfresh = TSFreshFeatureExtractor(
            default_fc_parameters=self.default_fc_parameters,
            n_jobs=self._threads_to_use,
            chunksize=self.chunksize,
            show_warnings=self.verbose > 1,
            disable_progressbar=self.verbose < 1,
        )

        X_t = self._tsfresh.fit_transform(X, y)
        self._rotf.fit(X_t, y)

        if self.save_transformed_data:
            self.transformed_data_ = X_t

        return self

    def _predict(self, X):
        """Predict class values of n instances in X.

        Parameters
        ----------
        X : 3D np.array of shape = [n_instances, n_dimensions, series_length]
            The data to make predictions for.

        Returns
        -------
        y : array-like, shape = [n_instances]
            Predicted class labels.
        """
        return self._rotf.predict(self._tsfresh.transform(X))

    def _predict_proba(self, X):
        """Predict class probabilities for n instances in X.

        Parameters
        ----------
        X : 3D np.array of shape = [n_instances, n_dimensions, series_length]
            The data to make predict probabilities for.

        Returns
        -------
        y : array-like, shape = [n_instances, n_classes_]
            Predicted probabilities using the ordering in classes_.
        """
        return self._rotf.predict_proba(self._tsfresh.transform(X))

    def _get_train_probs(self, X, y):
        self.check_is_fitted()
        X, y = check_X_y(X, y, coerce_to_numpy=True)

        n_instances, n_dims, series_length = X.shape

        if (n_instances != self.n_instances_ or n_dims != self.n_dims_
                or series_length != self.series_length_):
            raise ValueError(
                "n_instances, n_dims, series_length mismatch. X should be "
                "the same as the training data used in fit for generating train "
                "probabilities.")

        if not self.save_transformed_data:
            raise ValueError(
                "Currently only works with saved transform data from fit.")

        return self._rotf._get_train_probs(self.transformed_data_, y)
コード例 #11
0
     "suppress_warnings": True,
     "max_p": 2,
     "max_q": 2,
     "seasonal": False,
 },
 MultiplexForecaster: {
     "forecasters": [
         ("Naive_mean", NaiveForecaster(strategy="mean")),
         ("Naive_last", NaiveForecaster(strategy="last")),
         ("Naive_drift", NaiveForecaster(strategy="drift")),
     ],
     "selected_forecaster":
     "Naive_mean",
 },
 ShapeletTransformClassifier: {
     "estimator": RotationForest(n_estimators=3),
     "max_shapelets": 5,
     "n_shapelet_samples": 50,
     "batch_size": 20,
 },
 ContractedShapeletTransform: {
     "time_contract_in_mins": 0.025
 },
 ShapeletTransform: {
     "max_shapelets_to_store_per_class": 1,
     "min_shapelet_length": 3,
     "max_shapelet_length": 4,
 },
 RandomShapeletTransform: {
     "max_shapelets": 5,
     "n_shapelet_samples": 50,
コード例 #12
0
     "RocketClassifier - UnitTest",
     _reproduce_classification_unit_test(
         RocketClassifier(num_kernels=500, random_state=0)
     ),
 )
 _print_array(
     "RocketClassifier - BasicMotions",
     _reproduce_classification_basic_motions(
         RocketClassifier(num_kernels=500, random_state=0)
     ),
 )
 _print_array(
     "ShapeletTransformClassifier - UnitTest",
     _reproduce_classification_unit_test(
         ShapeletTransformClassifier(
             estimator=RotationForest(n_estimators=3),
             max_shapelets=20,
             n_shapelet_samples=500,
             batch_size=100,
             random_state=0,
         )
     ),
 )
 _print_array(
     "ShapeletTransformClassifier - BasicMotions",
     _reproduce_classification_basic_motions(
         ShapeletTransformClassifier(
             estimator=RotationForest(n_estimators=3),
             max_shapelets=20,
             n_shapelet_samples=500,
             batch_size=100,
コード例 #13
0
    def _fit(self, X, y):
        """Fit STC to training data.

        Parameters
        ----------
        X : 3D np.array of shape = [n_instances, n_dimensions, series_length]
            The training data.
        y : array-like, shape = [n_instances]
            The class labels.

        Returns
        -------
        self :
            Reference to self.

        Notes
        -----
        Changes state by creating a fitted model that updates attributes
        ending in "_" and sets is_fitted flag to True.
        """
        self.n_instances_, self.n_dims_, self.series_length_ = X.shape

        if self.time_limit_in_minutes > 0:
            # contracting 2/3 transform (with 1/5 of that taken away for final
            # transform), 1/3 classifier
            third = self.time_limit_in_minutes / 3
            self._classifier_limit_in_minutes = third
            self._transform_limit_in_minutes = (third * 2) / 5 * 4
        elif self.transform_limit_in_minutes > 0:
            self._transform_limit_in_minutes = self.transform_limit_in_minutes

        self._transformer = RandomShapeletTransform(
            n_shapelet_samples=self.n_shapelet_samples,
            max_shapelets=self.max_shapelets,
            max_shapelet_length=self.max_shapelet_length,
            time_limit_in_minutes=self._transform_limit_in_minutes,
            contract_max_n_shapelet_samples=self.
            contract_max_n_shapelet_samples,
            n_jobs=self.n_jobs,
            batch_size=self.batch_size,
            random_state=self.random_state,
        )

        self._estimator = _clone_estimator(
            RotationForest() if self.estimator is None else self.estimator,
            self.random_state,
        )

        if isinstance(self._estimator, RotationForest):
            self._estimator.save_transformed_data = self.save_transformed_data

        m = getattr(self._estimator, "n_jobs", None)
        if m is not None:
            self._estimator.n_jobs = self._threads_to_use

        m = getattr(self._estimator, "time_limit_in_minutes", None)
        if m is not None and self.time_limit_in_minutes > 0:
            self._estimator.time_limit_in_minutes = self._classifier_limit_in_minutes

        X_t = self._transformer.fit_transform(X, y).to_numpy()

        if self.save_transformed_data:
            self.transformed_data_ = X_t

        self._estimator.fit(X_t, y)

        return self