コード例 #1
0
ファイル: theta.py プロジェクト: fspinna/sktime_forked
    def transform(self, Z, X=None):
        """Transform data.

        Parameters
        ----------
        Z : pd.Series
            Series to transform.
        X : pd.DataFrame, optional (default=None)
            Exogenous data used in transformation.

        Returns
        -------
        theta_lines: ndarray or pd.DataFrame
            Transformed series: single Theta-line or a pd.DataFrame of
            shape: len(Z)*len(self.theta).
        """
        self.check_is_fitted()
        z = check_series(Z, enforce_univariate=True)
        theta = _check_theta(self.theta)

        forecaster = PolynomialTrendForecaster()
        forecaster.fit(z)
        fh = ForecastingHorizon(z.index, is_relative=False)
        trend = forecaster.predict(fh)

        theta_lines = np.zeros((z.shape[0], len(theta)))
        for i, theta in enumerate(theta):
            theta_lines[:, i] = _theta_transform(z, trend, theta)
        if isinstance(self.theta, (float, int)):
            return pd.Series(theta_lines.flatten(), index=z.index)
        else:
            return pd.DataFrame(theta_lines, columns=self.theta, index=z.index)
コード例 #2
0
ファイル: theta.py プロジェクト: satya-pattnaik/sktime
    def _transform(self, X, y=None):
        """Transform X and return a transformed version.

        private _transform containing the core logic, called from transform

        Parameters
        ----------
        X : pd.Series or pd.DataFrame
            Data to be transformed
        y : ignored argument for interface compatibility
            Additional data, e.g., labels for transformation

        Returns
        -------
        theta_lines: pd.Series or pd.DataFrame
            Transformed series
            pd.Series, with single Theta-line, if self.theta is float
            pd.DataFrame of shape: [len(X), len(self.theta)], if self.theta is tuple
        """
        z = X
        theta = _check_theta(self.theta)

        forecaster = PolynomialTrendForecaster()
        forecaster.fit(z)
        fh = ForecastingHorizon(z.index, is_relative=False)
        trend = forecaster.predict(fh)

        theta_lines = np.zeros((z.shape[0], len(theta)))
        for i, theta in enumerate(theta):
            theta_lines[:, i] = _theta_transform(z, trend, theta)
        if isinstance(self.theta, (float, int)):
            return pd.Series(theta_lines.flatten(), index=z.index)
        else:
            return pd.DataFrame(theta_lines, columns=self.theta, index=z.index)
コード例 #3
0
ファイル: impute.py プロジェクト: sjmiller8182/sktime
    def transform(self, Z, X=None):
        """Transform data.
        Returns a transformed version of Z.

        Parameters
        ----------
        Z : pd.Series, pd.DataFrame

        Returns
        -------
        Z : pd.Series, pd.DataFrame
            Transformed time series(es).
        """
        self.check_is_fitted()
        self._check_method()
        Z = check_series(Z)

        # replace missing_values with np.nan
        if self.missing_values:
            Z = Z.replace(to_replace=self.missing_values, value=np.nan)

        if self.method == "random":
            if isinstance(Z, pd.DataFrame):
                for col in Z:
                    Z[col] = Z[col].apply(lambda i: self._get_random(Z[col])
                                          if np.isnan(i) else i)
            else:
                Z = Z.apply(lambda i: self._get_random(Z)
                            if np.isnan(i) else i)
        elif self.method == "constant":
            Z = Z.fillna(value=self.value)
        elif self.method in ["backfill", "bfill", "pad", "ffill"]:
            Z = Z.fillna(method=self.method)
        elif self.method in ["drift", "forecaster"]:
            if self.method == "forecaster":
                forecaster = self.forecaster
            else:
                forecaster = PolynomialTrendForecaster(degree=1)
            # in-sample forecasting horizon
            fh_ins = -np.arange(len(Z))
            # fill NaN before fitting with ffill and backfill (heuristic)
            Z = Z.fillna(method="ffill").fillna(method="backfill")
            # multivariate
            if isinstance(Z, pd.DataFrame):
                for col in Z:
                    forecaster.fit(y=Z[col])
                    Z_pred = forecaster.predict(fh=fh_ins)
                    Z[col] = Z[col].fillna(value=Z_pred)
            # univariate
            else:
                forecaster.fit(y=Z)
                Z_pred = forecaster.predict(fh=fh_ins)
                Z = Z.fillna(value=Z_pred)
        elif self.method == "mean":
            Z = Z.fillna(value=Z.mean())
        elif self.method == "median":
            Z = Z.fillna(value=Z.median())
        elif self.method in ["nearest", "linear"]:
            Z = Z.interpolate(method=self.method)
        else:
            raise ValueError(f"method {self.method} not available")
        # fill first/last elements of series,
        # as some methods (e.g. "linear") cant impute those
        Z = Z.fillna(method="ffill").fillna(method="backfill")
        return Z