コード例 #1
0
def test_output_format_dim(n_instances, n_timepoints, n_intervals, features):
    X = _make_nested_from_array(np.ones(n_timepoints),
                                n_instances=n_instances,
                                n_columns=1)
    n_rows, n_cols = X.shape
    trans = RandomIntervalFeatureExtractor(n_intervals=n_intervals,
                                           features=features)
    Xt = trans.fit_transform(X)
    assert isinstance(Xt, pd.DataFrame)
    assert Xt.shape[0] == n_rows
    assert np.array_equal(Xt.values, np.ones(Xt.shape))
コード例 #2
0
def test_different_implementations():
    random_state = 1233
    X_train, y_train = make_classification_problem()

    # Compare with chained transformations.
    tran1 = RandomIntervalSegmenter(n_intervals=1, random_state=random_state)
    tran2 = SeriesToPrimitivesRowTransformer(FunctionTransformer(
        func=np.mean, validate=False),
                                             check_transformer=False)
    A = tran2.fit_transform(tran1.fit_transform(X_train))

    tran = RandomIntervalFeatureExtractor(n_intervals=1,
                                          features=[np.mean],
                                          random_state=random_state)
    B = tran.fit_transform(X_train)

    np.testing.assert_array_almost_equal(A, B)
コード例 #3
0
def test_different_pipelines():
    """Compare with transformer pipeline using TSFeatureUnion."""
    random_state = 1233
    X_train, y_train = make_classification_problem()
    steps = [
        (
            "segment",
            RandomIntervalSegmenter(n_intervals=1, random_state=random_state),
        ),
        (
            "transform",
            FeatureUnion([
                (
                    "mean",
                    SeriesToPrimitivesRowTransformer(
                        FunctionTransformer(func=np.mean, validate=False),
                        check_transformer=False,
                    ),
                ),
                (
                    "std",
                    SeriesToPrimitivesRowTransformer(
                        FunctionTransformer(func=np.std, validate=False),
                        check_transformer=False,
                    ),
                ),
                (
                    "slope",
                    SeriesToPrimitivesRowTransformer(
                        FunctionTransformer(func=_slope, validate=False),
                        check_transformer=False,
                    ),
                ),
            ]),
        ),
    ]
    pipe = Pipeline(steps)
    a = pipe.fit_transform(X_train)
    tran = RandomIntervalFeatureExtractor(
        n_intervals=1,
        features=[np.mean, np.std, _slope],
        random_state=random_state,
    )
    b = tran.fit_transform(X_train)
    np.testing.assert_array_equal(a, b)
    np.testing.assert_array_equal(pipe.steps[0][1].intervals_, tran.intervals_)
コード例 #4
0
def test_results(n_instances, n_timepoints, n_intervals):
    X, _ = make_classification_problem(n_instances=n_instances,
                                       n_timepoints=n_timepoints,
                                       return_numpy=True)
    transformer = RandomIntervalFeatureExtractor(n_intervals=n_intervals,
                                                 features=[np.mean, np.std])
    Xt = transformer.fit_transform(X)
    Xt = Xt.loc[:, ~Xt.columns.duplicated()]
    # Check results
    intervals = transformer.intervals_
    for start, end in intervals:
        expected_mean = np.mean(X[:, 0, start:end], axis=-1)
        expected_std = np.std(X[:, 0, start:end], axis=-1)

        actual_means = Xt.loc[:, f"{start}_{end}_mean"].to_numpy().ravel()
        actual_stds = Xt.loc[:, f"{start}_{end}_std"].to_numpy().ravel()

        np.testing.assert_array_equal(actual_means, expected_mean)
        np.testing.assert_array_equal(actual_stds, expected_std)