コード例 #1
0
def load4yr(sirin=True, nopull=True, mode='box', **kwargs):
    print("Mode: " + str(mode))
    print("No pull?" + str(nopull))
    llh = MultiPointSourceLLH()
    print("loading IC40...")
    IC40 = init40(mode=mode, nopull=nopull)
    print("loading IC59...")
    IC59 = init59(mode=mode, nopull=nopull)
    if sirin:
        print("loading IC79 - sirin's version...")
        IC79 = init79_sirin(mode=mode, nopull=nopull)
    else:
        print("loading IC79...")
        #Nopull is not used for kai's sample - the correction happened after his dataset started being used.
        IC79 = init79(mode=mode)
    print("loading IC86I...")
    IC86I = init86I(mode=mode, nopull=nopull)
    samples = [IC40, IC59, IC79, IC86I]

    arr_exp = []
    arr_mc = []
    for i in xrange(len(samples)):
        llh.add_sample(str(i), samples[i][0])
        print("Adding sample" + str(samples[i]))
        arr_exp.append(samples[i][1])
        arr_mc.append(samples[i][2])
    #gotta make exp, MC into dicts.
    exp = {0: arr_exp[0], 1: arr_exp[1], 2: arr_exp[2], 3: arr_exp[3]}
    MC = {0: arr_mc[0], 1: arr_mc[1], 2: arr_mc[2], 3: arr_mc[3]}

    return (llh, exp, MC)
コード例 #2
0
def multi_init(n, **kwargs):
    llh = MultiPointSourceLLH(  #hemispheres=dict(Full=[-np.inf, np.inf]),
        seed=np.random.randint(2**32),
        **kwargs)
    for i in xrange(len(n)):
        llh.add_sample(str(i), n[i])
    return llh
コード例 #3
0
def multi_init(n, **kwargs):
    llh = MultiPointSourceLLH(seed=np.random.randint(2**32), **kwargs)

    for i in xrange(len(n)):
        llh.add_sample(str(i), n[i])
        print("Adding sample: {}".format(str(n[i])))
    return llh
コード例 #4
0
ファイル: load_j7yr.py プロジェクト: brelethford/IceCube
def load7yr_mese(energy=True, sirin=False, mode='all', **kwargs):
    print("Energy: " + str(energy))
    print("Mode: " + str(mode))
    llh = MultiPointSourceLLH()
    print("loading IC40...")
    IC40 = init40(energy=energy, mode=mode)
    print("loading IC59...")
    IC59 = init59(energy=energy, mode=mode)
    if sirin:
        print("loading IC79 - sirin's version...")
        IC79 = init79_sirin(energy=energy, mode=mode, decorr=True)
    else:
        print("loading IC79...")
        IC79 = init79(energy=energy, mode=mode, decorr=True)
    print("loading IC86I...")
    IC86I = init86I(energy=energy, mode=mode, decorr=True)
    print("loading IC86II - IC86IV...")
    IC86II_III_IV = init3yr(energy=energy, mode=mode, decorr=True)
    print("loading MESE 3yr...")
    MESE3yr = initMESE3yr(energy=energy, mode=mode)
    print("loading MESE followup...")
    MESEfollowup = initMESEfollowup(energy=energy, mode=mode)
    samples = [IC40, IC59, IC79, IC86I, IC86II_III_IV, MESE3yr, MESEfollowup]

    arr_exp = []
    arr_mc = []
    for i in xrange(len(samples)):
        llh.add_sample(str(i), samples[i][0])
        print("Adding sample" + str(samples[i]))
        arr_exp.append(samples[i][1])
        arr_mc.append(samples[i][2])
    #gotta make exp, MC into dicts.
    exp = {
        0: arr_exp[0],
        1: arr_exp[1],
        2: arr_exp[2],
        3: arr_exp[3],
        4: arr_exp[4],
        5: arr_exp[5],
        6: arr_exp[6]
    }
    MC = {
        0: arr_mc[0],
        1: arr_mc[1],
        2: arr_mc[2],
        3: arr_mc[3],
        4: arr_mc[4],
        5: arr_mc[5],
        6: arr_mc[6]
    }

    return (llh, exp, MC)
コード例 #5
0
def load1yr(nopull=True, mode='box', **kwargs):
    print("Mode: " + str(mode))
    print("No pull?" + str(nopull))
    llh = MultiPointSourceLLH()
    print("loading IC86I...")
    IC86I = init86I(mode=mode, nopull=nopull)
    samples = [IC86I]

    arr_exp = []
    arr_mc = []
    for i in xrange(len(samples)):
        llh.add_sample(str(i), samples[i][0])
        print("Adding sample" + str(samples[i]))
        arr_exp.append(samples[i][1])
        arr_mc.append(samples[i][2])
    #gotta make exp, MC into dicts.
    exp = {0: arr_exp[0]}
    MC = {0: arr_mc[0]}

    return (llh, exp, MC)
コード例 #6
0
def load3yr_no40(energy=True, sirin=False, nopull=False, mode='all', **kwargs):
    print("Energy: " + str(energy))
    print("Mode: " + str(mode))
    print("No pull?" + str(nopull))
    llh = MultiPointSourceLLH()
    print("loading IC59...")
    IC59 = init59(mode=mode, nopull=nopull)
    if sirin:
        print("loading IC79 - sirin's version...")
        IC79 = init79_sirin(mode=mode, nopull=nopull)
    else:
        print("loading IC79...")
        #Nopull is not used for kai's sample - the correction happened after his dataset started being used.
        IC79 = init79(mode=mode)
    print("loading IC86I...")
    IC86I = init86I(mode=mode, nopull=nopull)
    samples = [IC59, IC79, IC86I]

    for i in xrange(len(samples)):
        llh.add_sample(str(i), samples[i])
        print("Adding sample" + str(samples[i]))
    return llh
コード例 #7
0
ファイル: load_j7yr.py プロジェクト: brelethford/IceCube
def load7yr(energy=True, sirin=False, mode='all', **kwargs):
    print("Energy: " + str(energy))
    print("Mode: " + str(mode))
    llh = MultiPointSourceLLH()
    print("loading IC40...")
    IC40 = init40(energy=energy, mode=mode)
    print("loading IC59...")
    IC59 = init59(energy=energy, mode=mode)
    if sirin:
        print("loading IC79 - sirin's version...")
        IC79 = init79_sirin(energy=energy, mode=mode)
    else:
        print("loading IC79...")
        IC79 = init79(energy=energy, mode=mode)
    print("loading IC86I...")
    IC86I = init86I(energy=energy, mode=mode)
    print("loading IC86II - IC86IV...")
    IC86II_III_IV = init3yr(energy=energy, mode=mode)
    samples = [IC40, IC59, IC79, IC86I, IC86II_III_IV]

    for i in xrange(len(samples)):
        llh.add_sample(str(i), samples[i])
        print("Adding sample" + str(samples[i]))
    return llh
コード例 #8
0
    print("\n# Setting up LLH for sample '{}'".format(name))
    # Get exp data and MC
    exp = _loader.exp_data_loader(name)[name]
    mc = _loader.mc_loader(name)[name]

    # Setup the energy LLH model with fixed index, only ns is fitted
    settings = _loader.settings_loader(name, skylab_bins=use_skylab_bins)[name]
    llh_model = EnergyLLH(**settings["llh_model_opts"])
    llh = PointSourceLLH(exp,
                         mc,
                         livetime,
                         llh_model,
                         scramble=scramble,
                         **settings["llh_opts"])

    multillh.add_sample(name, llh)

    del exp
    del mc
    gc.collect()

# Load the BG only distribution
with gzip.open(pdf_path) as fp:
    bg_ts_dist = ExpTailEmpiricalDist.from_json(fp)
    print("Loaded BG only TS distribution from:\n    {}".format(pdf_path))

# ##############################################################################
result = {
    "ts": [],
    "ns": [],
    "gamma": [],
コード例 #9
0
def config(alert_ind,
           seed=1,
           scramble=True,
           e_range=(0, np.inf),
           g_range=[1., 5.],
           gamma=2.0,
           E0=1 * TeV,
           remove=False,
           ncpu=20,
           nside=256,
           poisson=False,
           injector=True,
           verbose=True,
           smear=True):
    r""" Configure point source likelihood and injector. 

    Parameters
    ----------
    alert_ind: int
    index of IceCube alert event

    seed : int
    Seed for random number generator

    Returns
    -------
    llh : PointSourceLLH
    Point source likelihood object
    inj : PriorInjector
     Point source injector object
    """
    seasons = [("GFUOnline_v001p02", "IC86, 2011-2018"),
               ("GFUOnline_v001p02", "IC86, 2019")]
    #skymaps_path = '/data/user/steinrob/millipede_scan_archive/fits_v3_prob_map/'
    #files = glob(skymaps_path + '*.fits')
    #skymap_fits = fits.open(files[alert_ind])[0].data

    #Turn this into a function read_alert_event()
    #skymap_files = glob('/data/ana/realtime/alert_catalog_v2/2yr_prelim/fits_files/Run13*.fits.gz')
    skymap_files = glob(
        '/data/ana/realtime/alert_catalog_v2/fits_files/Run1*.fits.gz')
    #skymap_f = fits.open(skymap_files[alert_ind])
    #skymap_fits = skymap_f[1].data
    #skymap_header = skymap_f[1].header
    skymap_fits, skymap_header = hp.read_map(skymap_files[alert_ind],
                                             h=True,
                                             verbose=False)
    skymap_header = {name: val for name, val in skymap_header}
    run_id, ev_id = skymap_header['RUNID'], skymap_header['EVENTID']
    ev_mjd = skymap_header['EVENTMJD']
    ev_iso = skymap_header['START']
    signalness = skymap_header['SIGNAL']
    ev_en = skymap_header['ENERGY']
    ev_ra, ev_dec = np.radians(skymap_header['RA']), np.radians(
        skymap_header['DEC'])
    ev_stream = skymap_header['I3TYPE']
    skymap_llh = skymap_fits.copy()
    skymap_fits = np.exp(-1. * skymap_fits /
                         2.)  #Convert from 2LLH to unnormalized probability
    skymap_fits = np.where(skymap_fits > 1e-12, skymap_fits, 0.0)
    skymap_fits = skymap_fits / np.sum(skymap_fits)
    if smear:
        ninety_msk = skymap_llh < 64.2
        init_nside = hp.get_nside(skymap_llh)
        cdf = np.cumsum(np.sort(skymap_fits[ninety_msk][::-1]))
        pixs_above_ninety = np.count_nonzero(cdf > 0.1)
        original_ninety_area = hp.nside2pixarea(init_nside) * pixs_above_ninety
        new_ninety_area = hp.nside2pixarea(init_nside) * np.count_nonzero(
            skymap_fits[ninety_msk])
        original_ninety_radius = np.sqrt(original_ninety_area / np.pi)
        new_ninety_radius = np.sqrt(new_ninety_area / np.pi)
        scaled_probs = scale_2d_gauss(skymap_fits, original_ninety_radius,
                                      new_ninety_radius)
        skymap_fits = scaled_probs

    if hp.pixelfunc.get_nside(skymap_fits) != nside:
        skymap_fits = hp.pixelfunc.ud_grade(skymap_fits, nside)
    skymap_fits = skymap_fits / skymap_fits.sum()
    #print(hp.pixelfunc.get_nside(skymap_fits))
    spatial_prior = SpatialPrior(skymap_fits, containment=0.99)

    llh = []  # store individual llh as lists to prevent pointer over-writing
    multillh = MultiPointSourceLLH(ncpu=1)

    if verbose:
        print("\n seasons:")
    for season in np.atleast_1d(seasons):
        sample = season[0]
        name = season[1]

        exp, mc, livetime = Datasets[sample].season(name,
                                                    floor=np.radians(0.2))
        sinDec_bins = Datasets[sample].sinDec_bins(name)
        energy_bins = Datasets[sample].energy_bins(name)

        msg = "   - % 15s (" % season
        msg += "livetime %7.2f days, %6d events" % (livetime, exp.size)
        msg += ", mjd0 %.2f" % min(exp['time'])
        msg += ", mjd1 %.2f)" % max(exp['time'])
        if verbose:
            print(msg)

        llh_model = EnergyLLH(twodim_bins=[energy_bins, sinDec_bins],
                              allow_empty=True,
                              bounds=g_range,
                              seed=gamma,
                              kernel=1,
                              ncpu=ncpu)

        llh.append(
            PointSourceLLH(exp,
                           mc,
                           livetime,
                           mode="box",
                           scramble=scramble,
                           llh_model=llh_model,
                           nsource_bounds=(0., 1e3),
                           nsource=1.))

        multillh.add_sample(sample + " : " + name, llh[-1])

        # save a little RAM by removing items copied into LLHs
        del exp, mc

        # END for (season)

    ######################### REMOVE EVENT

    if injector is False:
        return multillh, spatial_prior
    else:
        inj = PriorInjector(spatial_prior,
                            seed=seed,
                            gamma=gamma,
                            E0=1 * TeV,
                            bunchsize=10)
        inj.fill(multillh.exp, multillh.mc, multillh.livetime)

        if verbose:
            print("\n injected spectrum:")
            print("   - %s" % str(inj.spectrum))

    return multillh, spatial_prior, inj
コード例 #10
0
def config(seasons,
           seed=1,
           scramble=True,
           e_range=(0, np.inf),
           verbose=True,
           gamma=2.0,
           dec=0.,
           remove=False,
           src_w=None):
    r""" Configure multi season point source likelihood and injector. 

  Parameters
  ----------
  seasons : list
    List of season names
  seed : int
    Seed for random number generator

  Returns
  -------
  multillh : MultiPointSourceLLH
    Multi year point source likelihood object
  inj : PointSourceInjector
     Point source injector object
  """

    print("Scramble is %s" % str(scramble))

    # store individual llh as lists to prevent pointer over-writing
    llh = []

    multillh = MultiPointSourceLLH(seed=seed, ncpu=25)

    # setup likelihoods
    if verbose: print("\n seasons:")
    for season in np.atleast_1d(seasons):

        sample = season[0]
        name = season[1]

        exp, mc, livetime = Datasets[sample].season(name)
        sinDec_bins = Datasets[sample].sinDec_bins(name)
        energy_bins = Datasets[sample].energy_bins(name)

        if sample == "GFU" and remove:
            exp = Datasets['GFU'].remove_ev(
                exp, 58018.87118560489)  # remove EHE 170922A

        mc = mc[mc["logE"] > 1.]

        if verbose:
            print("   - % 15s : % 15s" % (sample, name))
            vals = (livetime, exp.size, min(exp['time']), max(exp['time']))
            print(
                "     (livetime %7.2f days, %6d events, mjd0 %.2f, mjd1 %.2f)"
                % vals)

        llh_model = EnergyLLH(twodim_bins=[energy_bins, sinDec_bins],
                              allow_empty=True,
                              bounds=[1., 4.],
                              seed=2.,
                              kernel=1)

        llh.append(
            StackingPointSourceLLH(exp,
                                   mc,
                                   livetime,
                                   mode="box",
                                   scramble=scramble,
                                   llh_model=llh_model,
                                   nsource_bounds=(0., 1e3),
                                   nsource=15.))

        multillh.add_sample(sample + " : " + name, llh[-1])

        # save a little RAM by removing items copied into LLHs
        del exp, mc

    # END for (season)

    #######
    # LLH #
    #######

    #############################################################################

    ############
    # INJECTOR #
    ############

    inj = PointSourceInjector(gamma=gamma,
                              E0=1 * TeV,
                              seed=seed,
                              e_range=e_range)
    inj.fill(dec, multillh.exp, multillh.mc, multillh.livetime, src_w)

    ############
    # INJECTOR #
    ############

    #############################################################################

    if verbose:
        print("\n fitted spectrum:")
        vals = (inj.E0 / TeV)
        print("   - dN/dE = A (E / %.1f TeV)^-index TeV^-1cm^-2s^-1" % vals)
        print("   - index is *fit*")

        print("\n injected spectrum:")
        vals = (inj.E0 / TeV, inj.gamma)
        print("   - dN/dE = A (E / %.1f TeV)^-%.2f TeV^-1cm^-2s^-1" % vals)

    return (multillh, inj)