コード例 #1
0
ファイル: simulator.py プロジェクト: t-neumann/slamdunk
def getConversionRateFromBam(bam, ref, chromosome, start, end, strand):
    
    testFile = SlamSeqBamFile(bam, ref, SNPtools.SNPDictionary(None))
    
    sumConversionRate = 0
    readCount = 0
    #for chromosome in testFile.getChromosomes():
    #    readIterator = testFile.readsInChromosome(chromosome)
    #readIterator = testFile.readInRegion("chr7", 3217778, 3221036, "+", 55)
    readIterator = testFile.readInRegion(chromosome, start, end, strand, 100)
        
    for read in readIterator:
        conversionRate = 0
        if(read.tCount > 0):
            conversionRate = read.tcCount * 1.0 / read.tCount
        
        #if(read.tcCount > 0):
        sumConversionRate += conversionRate
        readCount += 1
        
        #if(readCount % 1000 == 0 and readCount > 0):
        #    print(str(readCount) + ": " + str(sumConversionRate) + " / " + str(readCount) + " = " + str(sumConversionRate / readCount))
        #if(readCount >= 10000):
        #    break
    
    print("Read count: " + str(readCount))
    print("Avg. conversion rate: " + str(sumConversionRate / readCount))
コード例 #2
0
def getConversionRateFromBam(bam, ref, chromosome, start, end, strand):

    testFile = SlamSeqBamFile(bam, ref, SNPtools.SNPDictionary(None))

    sumConversionRate = 0
    readCount = 0
    #for chromosome in testFile.getChromosomes():
    #    readIterator = testFile.readsInChromosome(chromosome)
    #readIterator = testFile.readInRegion("chr7", 3217778, 3221036, "+", 55)
    readIterator = testFile.readInRegion(chromosome, start, end, strand, 100)

    for read in readIterator:
        conversionRate = 0
        if (read.tCount > 0):
            conversionRate = read.tcCount * 1.0 / read.tCount

        #if(read.tcCount > 0):
        sumConversionRate += conversionRate
        readCount += 1

        #if(readCount % 1000 == 0 and readCount > 0):
        #    print(str(readCount) + ": " + str(sumConversionRate) + " / " + str(readCount) + " = " + str(sumConversionRate / readCount))
        #if(readCount >= 10000):
        #    break

    print("Read count: " + str(readCount))
    print("Avg. conversion rate: " + str(sumConversionRate / readCount))
コード例 #3
0
def statsComputeOverallRates(referenceFile,
                             bam,
                             minBaseQual,
                             outputCSV,
                             outputPDF,
                             log,
                             printOnly=False,
                             verbose=True,
                             force=False):

    if (not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing overall rates for file " + bam, file=log)
    else:
        # Init
        totalRatesFwd = [0] * 25
        totalRatesRev = [0] * 25
        tcCount = [0] * 100

        # Go through one chr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, None)

        chromosomes = testFile.getChromosomes()

        for chromosome in chromosomes:
            readIterator = testFile.readsInChromosome(chromosome, minBaseQual)

            for read in readIterator:

                # Compute rates for current read
                rates = read.conversionRates
                # Get T -> C conversions for current read
                tc = read.tcCount
                tcCount[tc] += 1

                # Add rates from read to total rates
                if (read.direction == ReadDirection.Reverse):
                    totalRatesRev = sumLists(totalRatesRev, rates)
                else:
                    totalRatesFwd = sumLists(totalRatesFwd, rates)

        # Print rates in correct format for plotting
        fo = open(outputCSV, "w")
        print("# slamdunk rates v" + __version__, file=fo)
        printRates(totalRatesFwd, totalRatesRev, fo)
        fo.close()

    if (not checkStep([bam, referenceFile], [outputPDF], force)):
        print("Skipped computing overall rate pdfs for file " + bam, file=log)
    else:

        #f = tempfile.NamedTemporaryFile(delete=False)
        #print(removeExtension(basename(bam)), outputCSV, sep='\t', file=f)
        #f.close()

        callR(getPlotter("compute_overall_rates") + " -f " + outputCSV +
              " -n " + removeExtension(os.path.basename(bam)) + " -O " +
              outputPDF,
              log,
              dry=printOnly,
              verbose=verbose)
コード例 #4
0
ファイル: dump.py プロジェクト: selsarrag/slamdunk
def dumpReadInfo(referenceFile,
                 bam,
                 minQual,
                 outputCSV,
                 snpsFile,
                 log,
                 printOnly=False,
                 verbose=True,
                 force=False):

    if (not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing T->C per reads position for file " + bam,
              file=log)
    else:

        snps = SNPtools.SNPDictionary(snpsFile)
        snps.read()

        outputFile = SlamSeqWriter(outputCSV)

        #Go through one chr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, snps)

        chromosomes = testFile.getChromosomes()

        for chromosome in chromosomes:
            readIterator = testFile.readsInChromosome(chromosome)
            for read in readIterator:
                outputFile.write(read)

        outputFile.close()
コード例 #5
0
ファイル: simulator.py プロジェクト: t-neumann/slamdunk
def evaluateReads(bam, referenceFile, bed, outputFile, mainOutput):

    print("Run " + bam)

    # Go through one chr after the other
    testFile = SlamSeqBamFile(bam, referenceFile, None)
     
    chromosomes = testFile.getChromosomes()
    
    bedTree = bedToIntervallTree(bed)
    #evalHist = [0] *  
    
    outFile = open(outputFile, "w")
    print("read.name", "read.chromosome", "read.startRefPos", "sim.utr", "read.utr", "sim.tcCount", "read.tcCount", sep = "\t", file=outFile)
    
    total = 0
    correct = 0
    correcPosWrongTC = 0
    wrongPos = 0
    
    minBaseQual = 0
    for chromosome in chromosomes:
        readIterator = testFile.readsInChromosome(chromosome, minBaseQual)
        
        for read in readIterator:
            total += 1
            simInfo = read.name.split("_")
            utrSim = simInfo[0]
            tcCountSim = int(simInfo[2])
            
            utrFound = None
            if read.chromosome in bedTree:
                overlaps = list(bedTree[read.chromosome][read.startRefPos:read.endRefPos])
                if len(overlaps) > 0:
                    utrFound = overlaps[0].data
            
            if utrFound == utrSim:
                if tcCountSim == read.tcCount:
                    correct += 1
                else:
                    correcPosWrongTC += 1
            else:
                wrongPos += 1 
            
            print(read.name, read.chromosome, read.startRefPos, utrSim, utrFound, tcCountSim, read.tcCount, sep = "\t", file=outFile)
    
    print(correct * 100.0 / total, correcPosWrongTC * 100.0 / total, wrongPos * 100.0 / total, total)
コード例 #6
0
ファイル: stats.py プロジェクト: t-neumann/slamdunk
def statsComputeOverallRates(referenceFile, bam, minBaseQual, outputCSV, outputPDF, log, printOnly=False, verbose=True, force=False):
     
    if(not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing overall rates for file " + bam, file=log)
    else:
        # Init
        totalRatesFwd = [0] * 25
        totalRatesRev = [0] * 25
        tcCount = [0] * 100
         
        # Go through one chr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, None)
         
        chromosomes = testFile.getChromosomes()
         
        for chromosome in chromosomes:
            readIterator = testFile.readsInChromosome(chromosome, minBaseQual)
                 
            for read in readIterator:
                 
                # Compute rates for current read
                rates = read.conversionRates
                # Get T -> C conversions for current read
                tc = read.tcCount
                tcCount[tc] += 1
                 
                # Add rates from read to total rates
                if(read.direction == ReadDirection.Reverse):
                    totalRatesRev = sumLists(totalRatesRev, rates)
                else:
                    totalRatesFwd = sumLists(totalRatesFwd, rates)
              
        # Print rates in correct format for plotting
        fo = open(outputCSV, "w")
        print("# slamdunk rates v" + __version__, file=fo)
        printRates(totalRatesFwd, totalRatesRev, fo)
        fo.close()
     
    if(not checkStep([bam, referenceFile], [outputPDF], force)):
        print("Skipped computing overall rate pdfs for file " + bam, file=log)
    else:

        #f = tempfile.NamedTemporaryFile(delete=False)
        #print(removeExtension(basename(bam)), outputCSV, sep='\t', file=f)
        #f.close()
             
        callR(getPlotter("compute_overall_rates") + " -f " + outputCSV + " -n " + removeExtension(os.path.basename(bam)) + " -O " + outputPDF, log, dry=printOnly, verbose=verbose)
コード例 #7
0
ファイル: tcounter.py プロジェクト: selsarrag/slamdunk
def genomewideReadSeparation(referenceFile, snpsFile, bam, minBaseQual,
                             outputBAMPrefix, conversionThreshold, log):

    ref = pysam.FastaFile(referenceFile)

    snps = SNPtools.SNPDictionary(snpsFile)
    snps.read()

    # Go through one chr after the other
    testFile = SlamSeqBamFile(bam, referenceFile, snps)

    samFile = pysam.AlignmentFile(bam, "rb")

    chromosomes = testFile.getChromosomes()

    backgroundReadFileName = outputBAMPrefix + "_backgroundReads.bam"
    tcReadFileName = outputBAMPrefix + "_TCReads.bam"

    backgroundReadFile = pysam.AlignmentFile(backgroundReadFileName,
                                             "wb",
                                             template=samFile)
    tcReadFile = pysam.AlignmentFile(tcReadFileName, "wb", template=samFile)

    tcReadDict = dict()

    for chromosome in chromosomes:

        readIterator = testFile.readsInChromosome(chromosome, minBaseQual,
                                                  conversionThreshold)

        for read in readIterator:
            if (read.isTcRead):
                tcReadDict[read.name] = 0

    for read in samFile.fetch():
        if read.query_name in tcReadDict:
            tcReadFile.write(read)
        else:
            backgroundReadFile.write(read)

    backgroundReadFile.close()
    tcReadFile.close()

    pysamIndex(backgroundReadFileName)
    pysamIndex(tcReadFileName)
コード例 #8
0
ファイル: dump.py プロジェクト: t-neumann/slamdunk
def dumpReadInfo(referenceFile, bam, minQual, outputCSV, snpsFile, log, printOnly=False, verbose=True, force=False):
    
    if(not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing T->C per reads position for file " + bam, file=log)
    else:
                
        snps = SNPtools.SNPDictionary(snpsFile)
        snps.read()
    
        outputFile = SlamSeqWriter(outputCSV)
        
        #Go through one chr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, snps)
        
        chromosomes = testFile.getChromosomes()
        
        for chromosome in chromosomes:
            readIterator = testFile.readsInChromosome(chromosome)
            for read in readIterator:
                outputFile.write(read)

        
        outputFile.close()
コード例 #9
0
ファイル: tcounter.py プロジェクト: selsarrag/slamdunk
def genomewideConversionRates(referenceFile, snpsFile, bam, minBaseQual,
                              outputBedGraphPrefix, conversionThreshold,
                              coverageCutoff, log):

    ref = pysam.FastaFile(referenceFile)

    snps = SNPtools.SNPDictionary(snpsFile)
    snps.read()

    # Go through one chr after the other
    testFile = SlamSeqBamFile(bam, referenceFile, snps)

    chromosomes = testFile.getChromosomes()

    bedGraphInfo = re.sub("_slamdunk_mapped.*", "",
                          basename(outputBedGraphPrefix))
    print(bedGraphInfo)

    fileBedGraphRatesPlus = open(
        outputBedGraphPrefix + "_TC_rates_genomewide.bedGraph", 'w')
    fileBedGraphRatesMinus = open(
        outputBedGraphPrefix + "_AG_rates_genomewide.bedGraph", 'w')
    fileBedGraphCoveragePlus = open(
        outputBedGraphPrefix + "_coverage_plus_genomewide.bedGraph", 'w')
    fileBedGraphCoverageMinus = open(
        outputBedGraphPrefix + "_coverage_minus_genomewide.bedGraph", 'w')
    fileBedGraphTCConversions = open(
        outputBedGraphPrefix + "_TC_conversions_genomewide.bedGraph", 'w')
    fileBedGraphAGConversions = open(
        outputBedGraphPrefix + "_AG_conversions_genomewide.bedGraph", 'w')
    fileBedGraphT = open(
        outputBedGraphPrefix + "_coverage_T_genomewide.bedGraph", 'w')
    fileBedGraphA = open(
        outputBedGraphPrefix + "_coverage_A_genomewide.bedGraph", 'w')

    print(
        "track type=bedGraph name=\"" + bedGraphInfo +
        " tc-conversions\" description=\"# T->C conversions / # reads on T per position genome-wide\"",
        file=fileBedGraphRatesPlus)
    print(
        "track type=bedGraph name=\"" + bedGraphInfo +
        " ag-conversions\" description=\"# A->G conversions / # reads on A per position genome-wide\"",
        file=fileBedGraphRatesMinus)
    print(
        "track type=bedGraph name=\"" + bedGraphInfo +
        " plus-strand coverage\" description=\"# Reads on plus strand genome-wide\"",
        file=fileBedGraphCoveragePlus)
    print(
        "track type=bedGraph name=\"" + bedGraphInfo +
        " minus-strand coverage\" description=\"# Reads on minus strand genome-wide\"",
        file=fileBedGraphCoverageMinus)
    print(
        "track type=bedGraph name=\"" + bedGraphInfo +
        " T->C conversions\" description=\"# T->C conversions on plus strand genome-wide\"",
        file=fileBedGraphTCConversions)
    print(
        "track type=bedGraph name=\"" + bedGraphInfo +
        " A->G conversions\" description=\"# A->G conversions on minus strand genome-wide\"",
        file=fileBedGraphAGConversions)
    print(
        "track type=bedGraph name=\"" + bedGraphInfo +
        " T-coverage\" description=\"# Plus-strand reads on Ts genome-wide\"",
        file=fileBedGraphT)
    print(
        "track type=bedGraph name=\"" + bedGraphInfo +
        " A-coverage\" description=\"# Minus-strand reads on As genome-wide\"",
        file=fileBedGraphA)

    for chromosome in chromosomes:

        chrLength = testFile.getChromosomeLength(chromosome)

        tcCount = [0] * chrLength
        agCount = [0] * chrLength

        coveragePlus = [0] * chrLength
        coverageMinus = [0] * chrLength

        tCoverage = [0] * chrLength
        aCoverage = [0] * chrLength

        readIterator = testFile.readsInChromosome(chromosome, minBaseQual,
                                                  conversionThreshold)

        for read in readIterator:
            if (not read.isTcRead):
                read.tcCount = 0
                read.mismatches = []
                read.conversionRates = 0.0
                read.tcRate = 0.0

            for mismatch in read.mismatches:
                if (mismatch.isTCMismatch(
                        read.direction == ReadDirection.Reverse)
                        and mismatch.referencePosition >= 0
                        and mismatch.referencePosition < chrLength):
                    if read.direction == ReadDirection.Reverse:
                        agCount[mismatch.referencePosition] += 1
                    else:
                        tcCount[mismatch.referencePosition] += 1

            for i in xrange(read.startRefPos, read.endRefPos):
                if (i >= 0 and i < chrLength):
                    if read.direction == ReadDirection.Reverse:
                        coverageMinus[i] += 1
                    else:
                        coveragePlus[i] += 1

        prevCoveragePlus = 0
        prevCoveragePlusPos = 0
        prevCoverageMinus = 0
        prevCoverageMinusPos = 0
        prevTCConversionRate = 0
        prevTCConversionRatePos = 0
        prevAGConversionRate = 0
        prevAGConversionRatePos = 0
        prevTCConversions = 0
        prevTCConversionPos = 0
        prevAGConversions = 0
        prevAGConversionPos = 0
        prevTCoverage = 0
        prevTCoveragePos = 0
        prevACoverage = 0
        prevACoveragePos = 0

        for pos in xrange(0, chrLength):
            if prevCoveragePlus != coveragePlus[pos]:
                print(chromosome + "\t" + str(prevCoveragePlusPos + 1) + "\t" +
                      str(pos + 1) + "\t" + str(prevCoveragePlus),
                      file=fileBedGraphCoveragePlus)
                prevCoveragePlus = coveragePlus[pos]
                prevCoveragePlusPos = pos
            if prevCoverageMinus != coverageMinus[pos]:
                print(chromosome + "\t" + str(prevCoverageMinusPos + 1) +
                      "\t" + str(pos + 1) + "\t" + str(prevCoverageMinus),
                      file=fileBedGraphCoverageMinus)
                prevCoverageMinus = coverageMinus[pos]
                prevCoverageMinusPos = pos

            tCoverage = 0

            if coveragePlus[pos] > 0:
                base = ref.fetch(reference=chromosome,
                                 start=pos + 1,
                                 end=pos + 2)
                if base.upper() == "T":
                    tCoverage = coveragePlus[pos]

            aCoverage = 0

            if coverageMinus[pos] > 0:
                base = ref.fetch(reference=chromosome,
                                 start=pos + 1,
                                 end=pos + 2)
                if base.upper() == "A":
                    aCoverage = coverageMinus[pos]

            if prevTCoverage != tCoverage:
                print(chromosome + "\t" + str(prevTCoveragePos + 1) + "\t" +
                      str(pos + 1) + "\t" + str(prevTCoverage),
                      file=fileBedGraphT)
                prevTCoverage = tCoverage
                prevTCoveragePos = pos

            if prevACoverage != aCoverage:
                print(chromosome + "\t" + str(prevACoveragePos + 1) + "\t" +
                      str(pos + 1) + "\t" + str(prevACoverage),
                      file=fileBedGraphA)
                prevACoverage = aCoverage
                prevACoveragePos = pos

            if prevTCConversions != tcCount[pos]:
                print(chromosome + "\t" + str(prevTCConversionPos + 1) + "\t" +
                      str(pos + 1) + "\t" + str(prevTCConversions),
                      file=fileBedGraphTCConversions)
                prevTCConversions = tcCount[pos]
                prevTCConversionPos = pos

            if prevAGConversions != agCount[pos]:
                print(chromosome + "\t" + str(prevAGConversionPos + 1) + "\t" +
                      str(pos + 1) + "\t" + str(prevAGConversions),
                      file=fileBedGraphAGConversions)
                prevAGConversions = agCount[pos]
                prevAGConversionPos = pos

            TCconversionRate = 0
            if coveragePlus[pos] > 0 and coveragePlus[pos] >= coverageCutoff:
                TCconversionRate = float(tcCount[pos]) / float(
                    coveragePlus[pos])

            AGconversionRate = 0
            if coverageMinus[pos] > 0 and coverageMinus[pos] >= coverageCutoff:
                AGconversionRate = float(agCount[pos]) / float(
                    coverageMinus[pos])

            if prevTCConversionRate != TCconversionRate:
                print(chromosome + "\t" + str(prevTCConversionRatePos + 1) +
                      "\t" + str(pos + 1) + "\t" + str(prevTCConversionRate),
                      file=fileBedGraphRatesPlus)
                prevTCConversionRate = TCconversionRate
                prevTCConversionRatePos = pos

            if prevAGConversionRate != AGconversionRate:
                print(chromosome + "\t" + str(prevAGConversionRatePos + 1) +
                      "\t" + str(pos + 1) + "\t" + str(prevAGConversionRate),
                      file=fileBedGraphRatesMinus)
                prevAGConversionRate = AGconversionRate
                prevAGConversionRatePos = pos

    fileBedGraphRatesPlus.close()
    fileBedGraphRatesMinus.close()
    fileBedGraphCoveragePlus.close()
    fileBedGraphCoverageMinus.close()
    fileBedGraphTCConversions.close()
    fileBedGraphAGConversions.close()
    fileBedGraphT.close()
    fileBedGraphA.close()
コード例 #10
0
ファイル: tcounter.py プロジェクト: selsarrag/slamdunk
def computeTconversions(ref,
                        bed,
                        snpsFile,
                        bam,
                        maxReadLength,
                        minQual,
                        outputCSV,
                        outputBedgraphPlus,
                        outputBedgraphMinus,
                        conversionThreshold,
                        log,
                        mle=False):

    referenceFile = pysam.FastaFile(ref)

    sampleInfo = getSampleInfo(bam)

    slamseqInfo = SlamSeqInfo(bam)
    #readNumber = slamseqInfo.MappedReads
    readNumber = slamseqInfo.FilteredReads

    bedMD5 = md5(bed)

    if (mle):
        fileNameTest = replaceExtension(outputCSV, ".tsv", "_perread")
        fileTest = open(fileNameTest, 'w')
        print("#slamdunk v" + __version__,
              __count_version__,
              "sample info:",
              sampleInfo.Name,
              sampleInfo.ID,
              sampleInfo.Type,
              sampleInfo.Time,
              sep="\t",
              file=fileTest)
        print("#annotation:",
              os.path.basename(bed),
              bedMD5,
              sep="\t",
              file=fileTest)
        #print("utr", "n", "k", file=fileTest)
        print(SlamSeqInterval.Header, file=fileTest)

    fileCSV = open(outputCSV, 'w')
    print("#slamdunk v" + __version__,
          __count_version__,
          "sample info:",
          sampleInfo.Name,
          sampleInfo.ID,
          sampleInfo.Type,
          sampleInfo.Time,
          sep="\t",
          file=fileCSV)
    print("#annotation:",
          os.path.basename(bed),
          bedMD5,
          sep="\t",
          file=fileCSV)
    print(SlamSeqInterval.Header, file=fileCSV)

    snps = SNPtools.SNPDictionary(snpsFile)
    snps.read()

    #Go through one chr after the other
    testFile = SlamSeqBamFile(bam, ref, snps)
    if not testFile.bamVersion == __bam_version__:
        raise RuntimeError("Wrong filtered BAM file version detected (" +
                           testFile.bamVersion + "). Expected version " +
                           __bam_version__ + ". Please rerun slamdunk filter.")

    bedMD5 = md5(bed)
    if slamseqInfo.AnnotationMD5 != bedMD5:
        print(
            "Warning: MD5 checksum of annotation (" + bedMD5 +
            ") does not matched MD5 in filtered BAM files (" +
            slamseqInfo.AnnotationMD5 +
            "). Most probably the annotation filed changed after the filtered BAM files were created.",
            file=log)

    conversionBedGraph = {}

    for utr in BedIterator(bed):
        Tcontent = 0
        slamSeqUtr = SlamSeqInterval(utr.chromosome, utr.start, utr.stop,
                                     utr.strand, utr.name, Tcontent, 0, 0, 0,
                                     0, 0, 0, 0)
        slamSeqUtrMLE = SlamSeqInterval(utr.chromosome, utr.start, utr.stop,
                                        utr.strand, utr.name, Tcontent, 0, 0,
                                        0, 0, 0, 0, 0)
        if (not utr.hasStrand()):
            raise RuntimeError(
                "Input BED file does not contain stranded intervals.")

        if utr.start < 0:
            raise RuntimeError(
                "Negativ start coordinate found. Please check the following entry in your BED file: "
                + utr)
        # Retreive reference sequence
        region = utr.chromosome + ":" + str(utr.start + 1) + "-" + str(
            utr.stop)

        if (utr.chromosome in list(referenceFile.references)):
            #print(refRegion,file=sys.stderr)
            # pysam-0.15.0.1
            #refSeq = referenceFile.fetch(region=region).upper()
            refSeq = referenceFile.fetch(reference=utr.chromosome,
                                         start=utr.start,
                                         end=utr.stop).upper()
            if (utr.strand == "-"):
                #refSeq = complement(refSeq[::-1])
                Tcontent = refSeq.count("A")
            else:
                Tcontent = refSeq.count("T")

            slamSeqUtr._Tcontent = Tcontent

        readIterator = testFile.readInRegion(utr.chromosome, utr.start,
                                             utr.stop, utr.strand,
                                             maxReadLength, minQual,
                                             conversionThreshold)

        tcCountUtr = [0] * utr.getLength()
        coverageUtr = [0] * utr.getLength()

        tInReads = []
        tcInRead = []

        countFwd = 0
        tcCountFwd = 0
        countRev = 0
        tCountRev = 0

        multiMapFwd = 0
        multiMapRev = 0

        for read in readIterator:

            # Overwrite any conversions for non-TC reads (reads with < 2 TC conversions)
            if (not read.isTcRead):
                read.tcCount = 0
                read.mismatches = []
                read.conversionRates = 0.0
                read.tcRate = 0.0

            if (read.direction == ReadDirection.Reverse):
                countRev += 1
                if read.tcCount > 0:
                    tCountRev += 1
                if read.isMultimapper:
                    multiMapRev += 1
            else:
                countFwd += 1
                if read.tcCount > 0:
                    tcCountFwd += 1
                if read.isMultimapper:
                    multiMapFwd += 1

            for mismatch in read.mismatches:
                if (mismatch.isTCMismatch(
                        read.direction == ReadDirection.Reverse)
                        and mismatch.referencePosition >= 0
                        and mismatch.referencePosition < utr.getLength()):
                    tcCountUtr[mismatch.referencePosition] += 1

            testN = read.getTcount()
            testk = 0
            for mismatch in read.mismatches:
                if (mismatch.referencePosition >= 0
                        and mismatch.referencePosition < utr.getLength()):
                    if (mismatch.isT(read.direction == ReadDirection.Reverse)):
                        testN += 1
                    if (mismatch.isTCMismatch(
                            read.direction == ReadDirection.Reverse)):
                        testk += 1
            #print(utr.name, read.name, read.direction, testN, testk, read.sequence, sep="\t")
            tInReads.append(testN)
            tcInRead.append(testk)
            #print(utr.name, testN, testk, sep="\t", file=fileTest)

            for i in xrange(read.startRefPos, read.endRefPos):
                if (i >= 0 and i < utr.getLength()):
                    coverageUtr[i] += 1

        if ((utr.strand == "+" and countFwd > 0)
                or (utr.strand == "-" and countRev > 0)):
            tcRateUtr = [
                x * 100.0 / y if y > 0 else 0
                for x, y in zip(tcCountUtr, coverageUtr)
            ]

            readCount = countFwd
            tcReadCount = tcCountFwd
            multiMapCount = multiMapFwd

            if (utr.strand == "-"):
                readCount = countRev
                tcReadCount = tCountRev
                multiMapCount = multiMapRev

            if ((utr.strand == "-" and countFwd > countRev)
                    or (utr.strand == "+" and countRev > countFwd)):
                print(
                    "Warning: " + utr.name + " is located on the " +
                    utr.strand +
                    " strand but read counts are higher for the opposite strand (fwd: "
                    + countFwd + ", rev: " + countRev + ")",
                    file=sys.stderr)

            refSeq = readIterator.getRefSeq()

            # Get number of covered Ts/As in the UTR and compute average conversion rate for all covered Ts/As
            coveredTcount = 0
            avgConversationRate = 0
            coveredPositions = 0
            # Get number of reads on T positions and number of reads with T->C conversions on T positions
            coverageOnTs = 0
            conversionsOnTs = 0

            for position in xrange(0, len(coverageUtr)):

                if (coverageUtr[position] > 0
                        and ((utr.strand == "+" and refSeq[position] == "T") or
                             (utr.strand == "-" and refSeq[position] == "A"))):
                    coveredTcount += 1
                    avgConversationRate += tcRateUtr[position]

                    coverageOnTs += coverageUtr[position]
                    conversionsOnTs += tcCountUtr[position]
                    conversionBedGraph[utr.chromosome + ":" +
                                       str(utr.start + position) + ":" +
                                       str(utr.strand)] = tcRateUtr[position]
                if (coverageUtr[position] > 0):
                    coveredPositions += 1

            if (coveredTcount > 0):
                avgConversationRate = avgConversationRate / coveredTcount
            else:
                avgConversationRate = 0

            # reads per million mapped to the UTR
            readsCPM = 0
            if (readNumber > 0):
                readsCPM = readCount * 1000000.0 / readNumber

            # Convert to SlamSeqInterval and print
            conversionRate = 0
            if (coverageOnTs > 0):
                conversionRate = float(conversionsOnTs) / float(coverageOnTs)
            slamSeqUtr = SlamSeqInterval(utr.chromosome, utr.start, utr.stop,
                                         utr.strand, utr.name, Tcontent,
                                         readsCPM, coverageOnTs,
                                         conversionsOnTs, conversionRate,
                                         readCount, tcReadCount, multiMapCount)
            slamSeqUtrMLE = SlamSeqInterval(
                utr.chromosome, utr.start, utr.stop, utr.strand, utr.name,
                Tcontent, readsCPM, coverageOnTs, conversionsOnTs,
                conversionRate, ",".join(str(x) for x in tInReads),
                ",".join(str(x) for x in tcInRead), multiMapCount)

        print(slamSeqUtr, file=fileCSV)
        if (mle):
            print(slamSeqUtrMLE, file=fileTest)

    fileCSV.close()
    if (mle):
        fileTest.close()

    fileBedgraphPlus = open(outputBedgraphPlus, 'w')
    fileBedgraphMinus = open(outputBedgraphMinus, 'w')

    for position in conversionBedGraph:
        positionData = position.split(":")
        if (positionData[2] == "+"):
            print(positionData[0],
                  positionData[1],
                  int(positionData[1]) + 1,
                  conversionBedGraph[position],
                  file=fileBedgraphPlus)
        else:
            print(positionData[0],
                  positionData[1],
                  int(positionData[1]) + 1,
                  conversionBedGraph[position],
                  file=fileBedgraphMinus)

    fileBedgraphPlus.close()
    fileBedgraphMinus.close()

    if (mle):
        fileNameMLE = replaceExtension(outputCSV, ".tsv", "_mle")
        callR(
            getPlotter("compute_conversion_rate_mle") + " -f " + fileNameTest +
            " -r " + "0.024" + " -o " + fileNameMLE + " &> /dev/null")
コード例 #11
0
def computeSNPMaskedRates(ref,
                          bed,
                          snpsFile,
                          bam,
                          maxReadLength,
                          minQual,
                          coverageCutoff,
                          variantFraction,
                          outputCSV,
                          outputPDF,
                          strictTCs,
                          log,
                          printOnly=False,
                          verbose=True,
                          force=False):

    if (not checkStep([bam, ref], [outputCSV], force)):
        print("Skipped computing T->C per UTR with SNP masking for file " +
              bam,
              file=log)
    else:
        fileCSV = open(outputCSV, 'w')

        snps = SNPtools.SNPDictionary(snpsFile)
        snps.read()

        #Go through one chr after the other
        testFile = SlamSeqBamFile(bam, ref, snps)

        progress = 0
        for utr in BedIterator(bed):

            if (not utr.hasStrand()):
                raise RuntimeError(
                    "Input BED file does not contain stranded intervals.")

            if utr.start < 0:
                raise RuntimeError(
                    "Negativ start coordinate found. Please check the following entry in your BED file: "
                    + utr)

            readIterator = testFile.readInRegion(utr.chromosome, utr.start,
                                                 utr.stop, utr.strand,
                                                 maxReadLength, minQual)

            unmaskedTCCount = 0
            maskedTCCount = 0
            readCount = 0

            for read in readIterator:

                # Overwrite any conversions for non-TC reads (reads with < 2 TC conversions)
                if (not read.isTcRead and strictTCs):
                    read.tcCount = 0
                    read.mismatches = []
                    read.conversionRates = 0.0
                    read.tcRate = 0.0

                isTC = False
                isTrueTC = False

                for mismatch in read.mismatches:
                    if (mismatch.isTCMismatch(
                            read.direction == ReadDirection.Reverse)
                            and mismatch.referencePosition >= 0
                            and mismatch.referencePosition < utr.getLength()):
                        isTrueTC = True

                    unmasked = False
                    if (read.direction == ReadDirection.Reverse
                            and mismatch.referenceBase == "A"
                            and mismatch.readBase == "G"):
                        unmasked = True
                    elif (read.direction != ReadDirection.Reverse
                          and mismatch.referenceBase == "T"
                          and mismatch.readBase == "C"):
                        unmasked = True

                    if (unmasked and mismatch.referencePosition >= 0
                            and mismatch.referencePosition < utr.getLength()):
                        isTC = True

                readCount += 1

                if (isTC):
                    unmaskedTCCount += 1

                if (isTrueTC):
                    maskedTCCount += 1

            containsSNP = 0

            if (unmaskedTCCount != maskedTCCount):
                containsSNP = 1

            print(utr.name + "\t" + str(readCount) + "\t" +
                  str(unmaskedTCCount) + "\t" + str(maskedTCCount) + "\t" +
                  str(containsSNP),
                  file=fileCSV)

            progress += 1

        fileCSV.close()

    if (not checkStep([outputCSV], [outputPDF], force)):
        print("Skipped computing T->C per UTR position plot for file " + bam,
              file=log)
    else:
        callR(getPlotter("SNPeval") + " -i " + outputCSV + " -c " +
              str(coverageCutoff) + " -v " + str(variantFraction) + " -o " +
              outputPDF,
              log,
              dry=printOnly,
              verbose=verbose)
コード例 #12
0
ファイル: stats.py プロジェクト: t-neumann/slamdunk
def statsComputeTCContext(referenceFile, bam, minBaseQual, outputCSV, outputPDF, log, printOnly=False, verbose=True, force=False):
     
    if(not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing overall rates for file " + bam, file=log)
    else:
        # Init
        # combinations = ["AT","CT","GT","TT","NT","AA","CA","GA","TA","NA"]
        frontCombinations = ["AT", "CT", "GT", "TT", "NT"]
        backCombinations = ["TA", "TC", "TG", "TT", "TN"]
         
        counts = {}
        counts['5prime'] = {}
        counts['3prime'] = {}
        counts['5prime']['fwd'] = {}
        counts['5prime']['rev'] = {}
        counts['3prime']['fwd'] = {}
        counts['3prime']['rev'] = {}
         
        for combination in frontCombinations :
            counts['5prime']['fwd'][combination] = 0
            counts['5prime']['rev'][combination] = 0
             
        for combination in backCombinations:
            counts['3prime']['fwd'][combination] = 0
            counts['3prime']['rev'][combination] = 0
             
        bamFile = pysam.AlignmentFile(bam, "rb")
         
        # Go through one chr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, None)
         
        chromosomes = testFile.getChromosomes()
         
        for chromosome in chromosomes:
                 
            for read in bamFile.fetch(region=chromosome):
                 
                i = 0
                while i < len(read.query_sequence):
                    if(read.query_sequence[i] == "T" and not read.is_reverse) :
                        frontContext = None
                        backContext = None
                        if (i > 0) :
                            frontContext = read.query_sequence[i - 1]
                        if (i < (len(read.query_sequence) - 1)) :
                            backContext  = read.query_sequence[i + 1]
                         
                        if (frontContext != None) :
                            counts['5prime']['fwd'][frontContext + "T"] += 1
                        if (backContext != None) :
                            counts['3prime']['fwd']["T" + backContext] += 1
                             
                    if(read.query_sequence[i] == "A" and read.is_reverse) :
                        frontContext = None
                        backContext = None
                        if (i > 0) :
                            backContext = read.query_sequence[i - 1]
                        if (i < (len(read.query_sequence) - 1)) :
                            frontContext  = read.query_sequence[i + 1]
                         
                        if (frontContext != None) :
                            counts['5prime']['rev'][complement(frontContext + "A")] += 1
                        if (backContext != None) :
                            counts['3prime']['rev'][complement("A" + backContext)] += 1
                     
                    i += 1
         
        # Print rates in correct format for plotting
        fo = open(outputCSV, "w")
         
        print("\t".join(frontCombinations), file=fo)
         
        frontFwdLine = ""
        frontRevLine = ""
        backFwdLine = ""
        backRevLine = ""
         
        for combination in frontCombinations :
            frontFwdLine += str(counts['5prime']['fwd'][combination]) + "\t"
            frontRevLine += str(counts['5prime']['rev'][combination]) + "\t"
         
        print(frontFwdLine.rstrip(), file=fo)
        print(frontRevLine.rstrip(), file=fo)
         
        print("\t".join(backCombinations), file=fo)
 
        for combination in backCombinations :
            backFwdLine += str(counts['3prime']['fwd'][combination]) + "\t"
            backRevLine += str(counts['3prime']['rev'][combination]) + "\t"
 
        print(backFwdLine.rstrip(), file=fo)
        print(backRevLine.rstrip(), file=fo)
         
        fo.close()
     
    if(not checkStep([bam, referenceFile], [outputPDF], force)):
        print("Skipped computing overall rate pdfs for file " + bam, file=log)
    else:
        f = tempfile.NamedTemporaryFile(delete=False)
        print(removeExtension(os.path.basename(bam)), outputCSV, sep='\t', file=f)
        f.close()
         
        callR(getPlotter("compute_context_TC_rates") + " -f " + f.name + " -O " + outputPDF, log, dry=printOnly, verbose=verbose)
コード例 #13
0
def tcPerUtr(referenceFile,
             utrBed,
             bam,
             minQual,
             maxReadLength,
             outputCSV,
             outputPDF,
             snpsFile,
             log,
             printOnly=False,
             verbose=True,
             force=False):

    if (not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing T->C per UTR position for file " + bam,
              file=log)
    else:

        counter = 0

        totalUtrCountFwd = [0] * utrNormFactor
        totalUtrCountRev = [0] * utrNormFactor

        tcPerPosRev = [0] * utrNormFactor
        tcPerPosFwd = [0] * utrNormFactor

        allPerPosRev = [0] * utrNormFactor
        allPerPosFwd = [0] * utrNormFactor

        snps = SNPtools.SNPDictionary(snpsFile)
        snps.read()

        # Go through one utr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, snps)

        for utr in BedIterator(utrBed):

            readIterator = testFile.readInRegion(utr.chromosome, utr.start,
                                                 utr.stop, utr.strand,
                                                 maxReadLength, minQual)

            tcForwardCounts = [0] * utrNormFactor
            mutForwardCounts = [0] * utrNormFactor
            tcReverseCounts = [0] * utrNormFactor
            mutReverseCounts = [0] * utrNormFactor

            for read in readIterator:

                tcCounts = [0] * utrNormFactor
                mutCounts = [0] * utrNormFactor

                for mismatch in read.mismatches:

                    mismatchPos = mismatch.referencePosition

                    # mismatchPos = read.startRefPos

                    if (utr.strand == "+"):

                        # New try for UTRs (remove + 1
                        if (mismatchPos >= (utr.getLength() - utrNormFactor)
                                and mismatchPos < utr.getLength()):
                            # if (mismatchPos >= (utr.getLength() - utrNormFactor) and mismatchPos < utr.getLength() + 1) :
                            mismatchPos = utrNormFactor - (utr.getLength() -
                                                           mismatchPos)

                            if (mismatch.isTCMismatch(
                                    read.direction == ReadDirection.Reverse)):
                                tcCounts[mismatchPos] += 1
                            else:
                                mutCounts[mismatchPos] += 1
                    else:

                        if (mismatchPos >= 0 and mismatchPos < min(
                                utr.getLength(), utrNormFactor)):
                            if (mismatch.isTCMismatch(
                                    read.direction == ReadDirection.Reverse)):
                                tcCounts[mismatchPos] += 1
                            else:
                                mutCounts[mismatchPos] += 1

                if (read.direction == ReadDirection.Reverse):

                    tcReverseCounts = sumLists(tcReverseCounts, tcCounts)
                    mutReverseCounts = sumLists(mutReverseCounts, mutCounts)

                    start = max(
                        0,
                        min(min(utr.getLength(), utrNormFactor),
                            read.startRefPos))
                    end = max(
                        0,
                        min(min(utr.getLength(), utrNormFactor),
                            read.endRefPos))

                    for i in range(start, end):

                        totalUtrCountRev[i] += 1

                else:

                    tcForwardCounts = sumLists(tcForwardCounts, tcCounts)
                    mutForwardCounts = sumLists(mutForwardCounts, mutCounts)

                    start = min(
                        utr.getLength(),
                        max(utr.getLength() - utrNormFactor, read.startRefPos))
                    end = min(
                        utr.getLength(),
                        max(utr.getLength() - utrNormFactor, read.endRefPos))

                    for i in range(start, end):
                        normPos = utrNormFactor - (utr.getLength() - i)
                        totalUtrCountFwd[normPos] += 1

            tcPerPosFwd = sumLists(tcPerPosFwd, tcForwardCounts)
            allPerPosFwd = sumLists(allPerPosFwd, mutForwardCounts)

            tcPerPosRev = sumLists(tcPerPosRev, tcReverseCounts)
            allPerPosRev = sumLists(allPerPosRev, mutReverseCounts)

            counter += 1

            if (verbose and counter % 10000 == 0):
                print("Handled " + str(counter) + " UTRs.", file=log)

        foTC = open(outputCSV, "w")

        print("# slamdunk tcperutr v" + __version__, file=foTC)

        reverseAllPerPosRev = allPerPosRev[::-1]
        reverseTcPerPosRev = tcPerPosRev[::-1]
        reverseTotalUtrCountRev = totalUtrCountRev[::-1]

        for i in range(0, utrNormFactor):
            print(allPerPosFwd[i],
                  reverseAllPerPosRev[i],
                  tcPerPosFwd[i],
                  reverseTcPerPosRev[i],
                  totalUtrCountFwd[i],
                  reverseTotalUtrCountRev[i],
                  sep='\t',
                  file=foTC)
        foTC.close()

    if (not checkStep([outputCSV], [outputPDF], force)):
        print("Skipped computing T->C per UTR position plot for file " + bam,
              file=log)
    else:
        callR(getPlotter("conversion_per_read_position") + " -u -i " +
              outputCSV + " -o " + outputPDF,
              log,
              dry=printOnly,
              verbose=verbose)
コード例 #14
0
def tcPerReadPos(referenceFile,
                 bam,
                 minQual,
                 maxReadLength,
                 outputCSV,
                 outputPDF,
                 snpsFile,
                 log,
                 printOnly=False,
                 verbose=True,
                 force=False):

    if (not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing T->C per reads position for file " + bam,
              file=log)
    else:

        totalReadCountFwd = [0] * maxReadLength
        totalReadCountRev = [0] * maxReadLength

        tcPerPosRev = [0] * maxReadLength
        tcPerPosFwd = [0] * maxReadLength

        allPerPosRev = [0] * maxReadLength
        allPerPosFwd = [0] * maxReadLength

        snps = SNPtools.SNPDictionary(snpsFile)
        snps.read()

        # Go through one chr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, snps)

        chromosomes = testFile.getChromosomes()

        for chromosome in chromosomes:
            readIterator = testFile.readsInChromosome(chromosome, minQual)

            for read in readIterator:

                tcCounts = [0] * maxReadLength
                mutCounts = [0] * maxReadLength

                for mismatch in read.mismatches:
                    if (mismatch.isTCMismatch(
                            read.direction == ReadDirection.Reverse)):
                        tcCounts[mismatch.readPosition] += 1
                    else:
                        mutCounts[mismatch.readPosition] += 1

                query_length = len(read.sequence)
                if (read.direction == ReadDirection.Reverse):
                    tcPerPosRev = sumLists(tcPerPosRev, tcCounts)
                    allPerPosRev = sumLists(allPerPosRev, mutCounts)

                    for i in range(0, query_length):
                        totalReadCountRev[i] += 1
                else:
                    tcPerPosFwd = sumLists(tcPerPosFwd, tcCounts)
                    allPerPosFwd = sumLists(allPerPosFwd, mutCounts)

                    for i in range(0, query_length):
                        totalReadCountFwd[i] += 1

        foTC = open(outputCSV, "w")

        print("# slamdunk tcperreadpos v" + __version__, file=foTC)

        for i in range(0, maxReadLength):
            print(allPerPosFwd[i],
                  allPerPosRev[i],
                  tcPerPosFwd[i],
                  tcPerPosRev[i],
                  totalReadCountFwd[i],
                  totalReadCountRev[i],
                  sep='\t',
                  file=foTC)
        foTC.close()

    if (not checkStep([outputCSV], [outputPDF], force)):
        print("Skipped computing T->C per reads position plot for file " + bam,
              file=log)
    else:
        callR(getPlotter("conversion_per_read_position") + " -i " + outputCSV +
              " -o " + outputPDF,
              log,
              dry=printOnly,
              verbose=verbose)
コード例 #15
0
def statsComputeOverallRatesPerUTR(referenceFile,
                                   bam,
                                   minBaseQual,
                                   strictTCs,
                                   outputCSV,
                                   outputPDF,
                                   utrBed,
                                   maxReadLength,
                                   log,
                                   printOnly=False,
                                   verbose=True,
                                   force=False):

    sampleInfo = getSampleInfo(bam)

    slamseqInfo = SlamSeqInfo(bam)

    if (not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing overall rates for file " + bam, file=log)
    else:

        # Go through one chr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, None)

        # UTR stats for MultiQC
        utrStats = dict()

        plotConversions = [
            'A>T',
            'A>G',
            'A>C',
            'C>A',
            'C>G',
            'C>T',
            'G>A',
            'G>C',
            'G>T',
            'T>A',
            'T>G',
            'T>C',
        ]

        for conversion in plotConversions:
            utrStats[conversion] = list()

        f = tempfile.NamedTemporaryFile(delete=False)

        for utr in BedIterator(utrBed):

            readIterator = testFile.readInRegion(utr.chromosome, utr.start,
                                                 utr.stop, utr.strand,
                                                 maxReadLength, minBaseQual)

            # Init
            totalRates = [0] * 25

            readCount = 0
            for read in readIterator:

                if (not read.isTcRead and strictTCs and read.tcCount > 0):
                    pass
                else:

                    # Compute rates for current read
                    rates = read.conversionRates

                    # Add rates from read to total rates
                    totalRates = sumLists(totalRates, rates)
                    readCount += 1

            print(utr.name,
                  utr.chromosome,
                  utr.start,
                  utr.stop,
                  utr.strand,
                  readCount,
                  "\t".join(str(x) for x in totalRates),
                  sep="\t",
                  file=f)

            # Process rates for MultiQC
            # Copied directly, too lazy to do it properly now

            utrDict = {}

            conversionSum = 0

            A_A = totalRates[0]
            conversionSum = +A_A
            A_C = totalRates[1]
            conversionSum = +A_C
            A_G = totalRates[2]
            conversionSum = +A_G
            A_T = totalRates[3]
            conversionSum = +A_T

            C_A = totalRates[5]
            conversionSum = +C_A
            C_C = totalRates[6]
            conversionSum = +C_C
            C_G = totalRates[7]
            conversionSum = +C_G
            C_T = totalRates[8]
            conversionSum = +C_T

            G_A = totalRates[10]
            conversionSum = +G_A
            G_C = totalRates[11]
            conversionSum = +G_C
            G_G = totalRates[12]
            conversionSum = +G_G
            G_T = totalRates[13]
            conversionSum = +G_T

            T_A = totalRates[15]
            conversionSum = +T_A
            T_C = totalRates[16]
            conversionSum = +T_C
            T_G = totalRates[17]
            conversionSum = +T_G
            T_T = totalRates[18]
            conversionSum = +T_T

            if utr.strand == "-":

                A_A, T_T = T_T, A_A
                G_G, C_C = C_C, G_G
                A_C, T_G = T_G, A_C
                A_G, T_C = T_C, A_G
                A_T, T_A = T_A, A_T
                C_A, G_T = G_T, C_A
                C_G, G_C = G_C, C_G
                C_T, G_A = G_A, C_T

            if conversionSum > 0:

                Asum = A_A + A_C + A_G + A_T
                Csum = C_A + C_C + C_G + C_T
                Gsum = G_A + G_C + G_G + G_T
                Tsum = T_A + T_C + T_G + T_T

                if Asum > 0:
                    A_T = A_T / float(Asum) * 100
                    A_G = A_G / float(Asum) * 100
                    A_C = A_C / float(Asum) * 100
                else:
                    A_T = 0
                    A_G = 0
                    A_C = 0
                if Csum > 0:
                    C_A = C_A / float(Csum) * 100
                    C_G = C_G / float(Csum) * 100
                    C_T = C_T / float(Csum) * 100
                else:
                    C_A = 0
                    C_G = 0
                    C_T = 0
                if Gsum > 0:
                    G_A = G_A / float(Gsum) * 100
                    G_C = G_C / float(Gsum) * 100
                    G_T = G_T / float(Gsum) * 100
                else:
                    G_A = 0
                    G_C = 0
                    G_T = 0
                if Tsum > 0:
                    T_A = T_A / float(Tsum) * 100
                    T_G = T_G / float(Tsum) * 100
                    T_C = T_C / float(Tsum) * 100
                else:
                    T_A = 0
                    T_G = 0
                    T_C = 0

                utrStats['A>T'].append(A_T)
                utrStats['A>G'].append(A_G)
                utrStats['A>C'].append(A_C)

                utrStats['C>A'].append(C_A)
                utrStats['C>G'].append(C_G)
                utrStats['C>T'].append(C_T)

                utrStats['G>A'].append(G_A)
                utrStats['G>T'].append(G_T)
                utrStats['G>C'].append(G_C)

                utrStats['T>A'].append(T_A)
                utrStats['T>G'].append(T_G)
                utrStats['T>C'].append(T_C)

        f.close()

        fo = open(outputCSV, "w")

        print("# slamdunk utrrates v" + __version__, file=fo)

        print("# Median-Conversions=", end="", file=fo)

        first = True
        for conversion in plotConversions:
            if (not first):
                print(',', file=fo, end="")
            else:
                first = False
            print(conversion + ":" + str(np.median(utrStats[conversion])),
                  file=fo,
                  end="")
        print(file=fo)

        print("Name",
              "Chr",
              "Start",
              "End",
              "Strand",
              "ReadCount",
              sep="\t",
              end="\t",
              file=fo)
        for i in range(0, 5):
            for j in range(0, 5):
                print(toBase[i].upper() + "_" + toBase[j].upper(),
                      end="",
                      file=fo)
                if (i != 4 or j != 4):
                    print("\t", end="", file=fo)
        print(file=fo)

        with open(f.name, "rb") as valueFile:
            fo.write(valueFile.read())

        fo.close()

    if (not checkStep([bam, referenceFile], [outputPDF], force)):
        print("Skipped computing global rate pdfs for file " + bam, file=log)
    else:
        f = tempfile.NamedTemporaryFile(delete=False)
        print(sampleInfo.Name, outputCSV, sep='\t', file=f)
        f.close()

        callR(getPlotter("globalRatePlotter") + " -f " + f.name + " -O " +
              outputPDF,
              log,
              dry=printOnly,
              verbose=verbose)
コード例 #16
0
def statsComputeTCContext(referenceFile,
                          bam,
                          minBaseQual,
                          outputCSV,
                          outputPDF,
                          log,
                          printOnly=False,
                          verbose=True,
                          force=False):

    if (not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing overall rates for file " + bam, file=log)
    else:
        # Init
        # combinations = ["AT","CT","GT","TT","NT","AA","CA","GA","TA","NA"]
        frontCombinations = ["AT", "CT", "GT", "TT", "NT"]
        backCombinations = ["TA", "TC", "TG", "TT", "TN"]

        counts = {}
        counts['5prime'] = {}
        counts['3prime'] = {}
        counts['5prime']['fwd'] = {}
        counts['5prime']['rev'] = {}
        counts['3prime']['fwd'] = {}
        counts['3prime']['rev'] = {}

        for combination in frontCombinations:
            counts['5prime']['fwd'][combination] = 0
            counts['5prime']['rev'][combination] = 0

        for combination in backCombinations:
            counts['3prime']['fwd'][combination] = 0
            counts['3prime']['rev'][combination] = 0

        bamFile = pysam.AlignmentFile(bam, "rb")

        # Go through one chr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, None)

        chromosomes = testFile.getChromosomes()

        for chromosome in chromosomes:

            for read in bamFile.fetch(region=chromosome):

                i = 0
                while i < len(read.query_sequence):
                    if (read.query_sequence[i] == "T" and not read.is_reverse):
                        frontContext = None
                        backContext = None
                        if (i > 0):
                            frontContext = read.query_sequence[i - 1]
                        if (i < (len(read.query_sequence) - 1)):
                            backContext = read.query_sequence[i + 1]

                        if (frontContext != None):
                            counts['5prime']['fwd'][frontContext + "T"] += 1
                        if (backContext != None):
                            counts['3prime']['fwd']["T" + backContext] += 1

                    if (read.query_sequence[i] == "A" and read.is_reverse):
                        frontContext = None
                        backContext = None
                        if (i > 0):
                            backContext = read.query_sequence[i - 1]
                        if (i < (len(read.query_sequence) - 1)):
                            frontContext = read.query_sequence[i + 1]

                        if (frontContext != None):
                            counts['5prime']['rev'][complement(frontContext +
                                                               "A")] += 1
                        if (backContext != None):
                            counts['3prime']['rev'][complement(
                                "A" + backContext)] += 1

                    i += 1

        # Print rates in correct format for plotting
        fo = open(outputCSV, "w")

        print("\t".join(frontCombinations), file=fo)

        frontFwdLine = ""
        frontRevLine = ""
        backFwdLine = ""
        backRevLine = ""

        for combination in frontCombinations:
            frontFwdLine += str(counts['5prime']['fwd'][combination]) + "\t"
            frontRevLine += str(counts['5prime']['rev'][combination]) + "\t"

        print(frontFwdLine.rstrip(), file=fo)
        print(frontRevLine.rstrip(), file=fo)

        print("\t".join(backCombinations), file=fo)

        for combination in backCombinations:
            backFwdLine += str(counts['3prime']['fwd'][combination]) + "\t"
            backRevLine += str(counts['3prime']['rev'][combination]) + "\t"

        print(backFwdLine.rstrip(), file=fo)
        print(backRevLine.rstrip(), file=fo)

        fo.close()

    if (not checkStep([bam, referenceFile], [outputPDF], force)):
        print("Skipped computing overall rate pdfs for file " + bam, file=log)
    else:
        f = tempfile.NamedTemporaryFile(delete=False)
        print(removeExtension(os.path.basename(bam)),
              outputCSV,
              sep='\t',
              file=f)
        f.close()

        callR(getPlotter("compute_context_TC_rates") + " -f " + f.name +
              " -O " + outputPDF,
              log,
              dry=printOnly,
              verbose=verbose)
コード例 #17
0
ファイル: stats.py プロジェクト: t-neumann/slamdunk
def statsComputeOverallRatesPerUTR(referenceFile, bam, minBaseQual, strictTCs, outputCSV, outputPDF, utrBed, maxReadLength, log, printOnly=False, verbose=True, force=False):
    
    sampleInfo = getSampleInfo(bam)
    
    slamseqInfo = SlamSeqInfo(bam)
    
    if(not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing overall rates for file " + bam, file=log)
    else:
    
        # Go through one chr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, None)
        
        # UTR stats for MultiQC
        utrStats = dict()
        
        plotConversions = ['A>T', 'A>G', 'A>C',
                           'C>A', 'C>G', 'C>T',
                           'G>A', 'G>C', 'G>T',
                           'T>A', 'T>G', 'T>C',
        ]
        
        for conversion in plotConversions:
            utrStats[conversion] = list()
            
        f = tempfile.NamedTemporaryFile(delete=False)
                        
        for utr in BedIterator(utrBed):
                                         
            readIterator = testFile.readInRegion(utr.chromosome, utr.start, utr.stop, utr.strand, maxReadLength, minBaseQual)
            
            # Init
            totalRates = [0] * 25
            
            readCount = 0
            for read in readIterator:
                
                if (not read.isTcRead and strictTCs and read.tcCount > 0) :
                    pass
                else :
                
                    # Compute rates for current read
                    rates = read.conversionRates
                
                    # Add rates from read to total rates
                    totalRates = sumLists(totalRates, rates)
                    readCount += 1
                    
            print(utr.name, utr.chromosome, utr.start, utr.stop, utr.strand, readCount, "\t".join(str(x) for x in totalRates), sep="\t", file=f)
            
            # Process rates for MultiQC
            # Copied directly, too lazy to do it properly now
            
            utrDict = {}
            
            conversionSum = 0
            
            A_A = totalRates[0]
            conversionSum =+ A_A
            A_C = totalRates[1]
            conversionSum =+ A_C
            A_G = totalRates[2]
            conversionSum =+ A_G
            A_T = totalRates[3]
            conversionSum =+ A_T
            
            C_A = totalRates[5]
            conversionSum =+ C_A
            C_C = totalRates[6]
            conversionSum =+ C_C
            C_G = totalRates[7]
            conversionSum =+ C_G
            C_T = totalRates[8]
            conversionSum =+ C_T
            
            G_A = totalRates[10]
            conversionSum =+ G_A
            G_C = totalRates[11]
            conversionSum =+ G_C
            G_G = totalRates[12]
            conversionSum =+ G_G
            G_T = totalRates[13]
            conversionSum =+ G_T
            
            T_A = totalRates[15]
            conversionSum =+ T_A
            T_C = totalRates[16]
            conversionSum =+ T_C
            T_G = totalRates[17]
            conversionSum =+ T_G
            T_T = totalRates[18]
            conversionSum =+ T_T
            
            if utr.strand == "-":
                    
                A_A, T_T = T_T,A_A
                G_G, C_C = C_C,G_G
                A_C, T_G = T_G, A_C
                A_G, T_C = T_C, A_G
                A_T, T_A = T_A, A_T
                C_A, G_T = G_T, C_A
                C_G, G_C = G_C, C_G
                C_T, G_A = G_A, C_T
            
            if conversionSum > 0:
                        
                Asum = A_A + A_C + A_G + A_T
                Csum = C_A + C_C + C_G + C_T
                Gsum = G_A + G_C + G_G + G_T
                Tsum = T_A + T_C + T_G + T_T
                 
                if Asum > 0 :
                    A_T = A_T / float(Asum) * 100
                    A_G = A_G / float(Asum) * 100
                    A_C = A_C / float(Asum) * 100
                else :
                    A_T = 0
                    A_G = 0
                    A_C = 0
                if Csum > 0:
                    C_A = C_A / float(Csum) * 100
                    C_G = C_G / float(Csum) * 100
                    C_T = C_T / float(Csum) * 100
                else :
                    C_A = 0
                    C_G = 0
                    C_T = 0
                if Gsum > 0:
                    G_A = G_A / float(Gsum) * 100
                    G_C = G_C / float(Gsum) * 100
                    G_T = G_T / float(Gsum) * 100
                else :
                    G_A = 0
                    G_C = 0
                    G_T = 0
                if Tsum > 0:
                    T_A = T_A / float(Tsum) * 100
                    T_G = T_G / float(Tsum) * 100
                    T_C = T_C / float(Tsum) * 100
                else :
                    T_A = 0
                    T_G = 0
                    T_C = 0
                   
                utrStats['A>T'].append(A_T)
                utrStats['A>G'].append(A_G)
                utrStats['A>C'].append(A_C)
                
                utrStats['C>A'].append(C_A)
                utrStats['C>G'].append(C_G)
                utrStats['C>T'].append(C_T)
                
                utrStats['G>A'].append(G_A)
                utrStats['G>T'].append(G_T)
                utrStats['G>C'].append(G_C)
                
                utrStats['T>A'].append(T_A)
                utrStats['T>G'].append(T_G)
                utrStats['T>C'].append(T_C)        
                
        f.close()
        
        fo = open(outputCSV, "w")
        
        print("# slamdunk utrrates v" + __version__, file=fo)
        
        print("# Median-Conversions=",end="",file=fo)
        
        first = True
        for conversion in plotConversions:
            if (not first) :
                print(',',file=fo, end="")
            else :
                first = False
            print(conversion + ":" + str(np.median(utrStats[conversion])),file=fo, end="")
        print(file=fo) 
        
        print("Name", "Chr", "Start", "End", "Strand", "ReadCount", sep="\t", end="\t", file=fo)
        for i in range(0, 5):
            for j in range(0, 5):
                print(toBase[i].upper() + "_" + toBase[j].upper(), end="", file=fo)
                if(i != 4 or j != 4):
                    print("\t", end="", file=fo)
        print(file=fo)
        
        with open(f.name, "rb") as valueFile:
            fo.write(valueFile.read())
        
        fo.close()
                
    if(not checkStep([bam, referenceFile], [outputPDF], force)):
        print("Skipped computing global rate pdfs for file " + bam, file=log)
    else:
        f = tempfile.NamedTemporaryFile(delete=False)
        print(sampleInfo.Name, outputCSV, sep='\t', file=f)
        f.close()
              
        callR(getPlotter("globalRatePlotter") + " -f " + f.name + " -O " + outputPDF, log, dry=printOnly, verbose=verbose)
コード例 #18
0
ファイル: stats.py プロジェクト: t-neumann/slamdunk
def tcPerReadPos(referenceFile, bam, minQual, maxReadLength, outputCSV, outputPDF, snpsFile, log, printOnly=False, verbose=True, force=False):
    
    if(not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing T->C per reads position for file " + bam, file=log)
    else:
        
        totalReadCountFwd = [0] * maxReadLength
        totalReadCountRev = [0] * maxReadLength
        
        tcPerPosRev = [0] * maxReadLength
        tcPerPosFwd = [0] * maxReadLength
        
        allPerPosRev = [0] * maxReadLength
        allPerPosFwd = [0] * maxReadLength

        
        snps = SNPtools.SNPDictionary(snpsFile)
        snps.read()
        
        # Go through one chr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, snps)
        
        chromosomes = testFile.getChromosomes()
        
        for chromosome in chromosomes:
            readIterator = testFile.readsInChromosome(chromosome, minQual)
                
            for read in readIterator:
                
                tcCounts = [0] * maxReadLength
                mutCounts = [0] * maxReadLength
                
                for mismatch in read.mismatches:
                    if(mismatch.isTCMismatch(read.direction == ReadDirection.Reverse)):
                        tcCounts[mismatch.readPosition] += 1
                    else :
                        mutCounts[mismatch.readPosition] += 1
                        
                
                query_length = len(read.sequence)
                if(read.direction == ReadDirection.Reverse):
                    tcPerPosRev = sumLists(tcPerPosRev, tcCounts)
                    allPerPosRev = sumLists(allPerPosRev, mutCounts)
                    
                    for i in range(0, query_length):
                        totalReadCountRev[i] += 1
                else:
                    tcPerPosFwd = sumLists(tcPerPosFwd, tcCounts)
                    allPerPosFwd = sumLists(allPerPosFwd, mutCounts)
                    
                    for i in range(0, query_length):
                        totalReadCountFwd[i] += 1
                        

        foTC = open(outputCSV, "w")
        
        print("# slamdunk tcperreadpos v" + __version__, file=foTC)
        
        for i in range(0, maxReadLength):
            print(allPerPosFwd[i], allPerPosRev[i], tcPerPosFwd[i], tcPerPosRev[i], totalReadCountFwd[i], totalReadCountRev[i], sep='\t', file=foTC)
        foTC.close()
       
    if(not checkStep([outputCSV], [outputPDF], force)):
        print("Skipped computing T->C per reads position plot for file " + bam, file=log)
    else: 
        callR(getPlotter("conversion_per_read_position") + " -i " + outputCSV + " -o " + outputPDF, log, dry=printOnly, verbose=verbose)
コード例 #19
0
def evaluateReads(bam, referenceFile, bed, outputFile, mainOutput):

    print("Run " + bam)

    # Go through one chr after the other
    testFile = SlamSeqBamFile(bam, referenceFile, None)

    chromosomes = testFile.getChromosomes()

    bedTree = bedToIntervallTree(bed)
    #evalHist = [0] *

    outFile = open(outputFile, "w")
    print("read.name",
          "read.chromosome",
          "read.startRefPos",
          "sim.utr",
          "read.utr",
          "sim.tcCount",
          "read.tcCount",
          sep="\t",
          file=outFile)

    total = 0
    correct = 0
    correcPosWrongTC = 0
    wrongPos = 0

    minBaseQual = 0
    for chromosome in chromosomes:
        readIterator = testFile.readsInChromosome(chromosome, minBaseQual)

        for read in readIterator:
            total += 1
            simInfo = read.name.split("_")
            utrSim = simInfo[0]
            tcCountSim = int(simInfo[2])

            utrFound = None
            if read.chromosome in bedTree:
                overlaps = list(
                    bedTree[read.chromosome][read.startRefPos:read.endRefPos])
                if len(overlaps) > 0:
                    utrFound = overlaps[0].data

            if utrFound == utrSim:
                if tcCountSim == read.tcCount:
                    correct += 1
                else:
                    correcPosWrongTC += 1
            else:
                wrongPos += 1

            print(read.name,
                  read.chromosome,
                  read.startRefPos,
                  utrSim,
                  utrFound,
                  tcCountSim,
                  read.tcCount,
                  sep="\t",
                  file=outFile)

    #print(correct * 100.0 / total, correcPosWrongTC * 100.0 / total, wrongPos * 100.0 / total, total)
    print(correct, correcPosWrongTC, wrongPos, total)
コード例 #20
0
ファイル: stats.py プロジェクト: t-neumann/slamdunk
def computeSNPMaskedRates (ref, bed, snpsFile, bam, maxReadLength, minQual, coverageCutoff, variantFraction, outputCSV, outputPDF, strictTCs, log, printOnly=False, verbose=True, force=False):
    
    if(not checkStep([bam, ref], [outputCSV], force)):
        print("Skipped computing T->C per UTR with SNP masking for file " + bam, file=log)
    else:    
        fileCSV = open(outputCSV,'w')
        
        snps = SNPtools.SNPDictionary(snpsFile)
        snps.read()
        
        #Go through one chr after the other
        testFile = SlamSeqBamFile(bam, ref, snps)
                                 
        progress = 0
        for utr in BedIterator(bed):
            
            if(not utr.hasStrand()):
                raise RuntimeError("Input BED file does not contain stranded intervals.")
            
            if utr.start < 0:
                raise RuntimeError("Negativ start coordinate found. Please check the following entry in your BED file: " + utr)
    
            readIterator = testFile.readInRegion(utr.chromosome, utr.start, utr.stop, utr.strand, maxReadLength, minQual)
            
            unmaskedTCCount = 0
            maskedTCCount = 0
            readCount = 0
            
            for read in readIterator:
                
                # Overwrite any conversions for non-TC reads (reads with < 2 TC conversions)
                if (not read.isTcRead and strictTCs) :
                    read.tcCount = 0
                    read.mismatches = []
                    read.conversionRates = 0.0
                    read.tcRate = 0.0
                    
                isTC = False
                isTrueTC = False
                
                for mismatch in read.mismatches:
                    if(mismatch.isTCMismatch(read.direction == ReadDirection.Reverse) and mismatch.referencePosition >= 0 and mismatch.referencePosition < utr.getLength()):
                        isTrueTC = True
                    
                    unmasked = False
                    if (read.direction == ReadDirection.Reverse and mismatch.referenceBase == "A" and mismatch.readBase == "G"):
                        unmasked = True
                    elif (read.direction != ReadDirection.Reverse and mismatch.referenceBase == "T" and mismatch.readBase == "C") :
                        unmasked = True
                        
                    if (unmasked and mismatch.referencePosition >= 0 and mismatch.referencePosition < utr.getLength()) :
                        isTC = True
                        
                readCount += 1
                
                if (isTC) :
                    unmaskedTCCount += 1
                    
                if (isTrueTC) :
                    maskedTCCount += 1
            
            containsSNP = 0
            
            if (unmaskedTCCount != maskedTCCount) :
                containsSNP = 1
                
            print(utr.name + "\t" + str(readCount) + "\t" + str(unmaskedTCCount) + "\t" + str(maskedTCCount) + "\t" + str(containsSNP), file=fileCSV)
                   
            progress += 1
            
        fileCSV.close()
    
    if(not checkStep([outputCSV], [outputPDF], force)):
        print("Skipped computing T->C per UTR position plot for file " + bam, file=log)
    else: 
        callR(getPlotter("SNPeval") + " -i " + outputCSV + " -c " + str(coverageCutoff) + " -v " + str(variantFraction) + " -o " + outputPDF, log, dry=printOnly, verbose=verbose)            
コード例 #21
0
ファイル: stats.py プロジェクト: t-neumann/slamdunk
def tcPerUtr(referenceFile, utrBed, bam, minQual, maxReadLength, outputCSV, outputPDF, snpsFile, log, printOnly=False, verbose=True, force=False):
        
    if(not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing T->C per UTR position for file " + bam, file=log)
    else:
    
        counter = 0
            
        totalUtrCountFwd = [0] * utrNormFactor
        totalUtrCountRev = [0] * utrNormFactor
        
        tcPerPosRev = [0] * utrNormFactor
        tcPerPosFwd = [0] * utrNormFactor
         
        allPerPosRev = [0] * utrNormFactor
        allPerPosFwd = [0] * utrNormFactor
        
        snps = SNPtools.SNPDictionary(snpsFile)
        snps.read()
        
        # Go through one utr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, snps)
        
        for utr in BedIterator(utrBed):
                                         
            readIterator = testFile.readInRegion(utr.chromosome, utr.start, utr.stop, utr.strand, maxReadLength, minQual)
            
            tcForwardCounts = [0] * utrNormFactor
            mutForwardCounts = [0] * utrNormFactor
            tcReverseCounts = [0] * utrNormFactor
            mutReverseCounts = [0] * utrNormFactor
            
            for read in readIterator:
                
                tcCounts = [0] * utrNormFactor
                mutCounts = [0] * utrNormFactor
                
                for mismatch in read.mismatches:
                             
                    mismatchPos = mismatch.referencePosition

                    # mismatchPos = read.startRefPos
                        
                    if (utr.strand == "+") :
                                                
                        # New try for UTRs (remove + 1
                        if (mismatchPos >= (utr.getLength() - utrNormFactor) and mismatchPos < utr.getLength()) :
                        # if (mismatchPos >= (utr.getLength() - utrNormFactor) and mismatchPos < utr.getLength() + 1) :
                            mismatchPos = utrNormFactor - (utr.getLength() - mismatchPos)
                            
                            if(mismatch.isTCMismatch(read.direction == ReadDirection.Reverse)):
                                tcCounts[mismatchPos] += 1
                            else :
                                mutCounts[mismatchPos] += 1                    
                    else :
                        
                        if (mismatchPos >= 0 and mismatchPos < min(utr.getLength(), utrNormFactor)) :
                            if(mismatch.isTCMismatch(read.direction == ReadDirection.Reverse)):
                                tcCounts[mismatchPos] += 1
                            else :
                                mutCounts[mismatchPos] += 1
                            
                if(read.direction == ReadDirection.Reverse):
                    
                    tcReverseCounts = sumLists(tcReverseCounts, tcCounts)
                    mutReverseCounts = sumLists(mutReverseCounts, mutCounts)
                    
                    start = max(0, min(min(utr.getLength(), utrNormFactor), read.startRefPos))
                    end = max(0, min(min(utr.getLength(), utrNormFactor), read.endRefPos))
                    
                    for i in range(start, end):
                        
                        totalUtrCountRev[i] += 1
                     
                else:
                            
                    tcForwardCounts = sumLists(tcForwardCounts, tcCounts)
                    mutForwardCounts = sumLists(mutForwardCounts, mutCounts)
                    
                    start = min(utr.getLength(), max(utr.getLength() - utrNormFactor, read.startRefPos))
                    end = min(utr.getLength(), max(utr.getLength() - utrNormFactor, read.endRefPos))
                
                    for i in range(start, end):
                        normPos = utrNormFactor - (utr.getLength() - i)
                        totalUtrCountFwd[normPos] += 1                 
                        
            tcPerPosFwd = sumLists(tcPerPosFwd, tcForwardCounts)
            allPerPosFwd = sumLists(allPerPosFwd, mutForwardCounts)
             
            tcPerPosRev = sumLists(tcPerPosRev, tcReverseCounts)
            allPerPosRev = sumLists(allPerPosRev, mutReverseCounts)
            
            counter += 1
            
            if (verbose and counter % 10000 == 0) :
                print("Handled " + str(counter) + " UTRs.", file=log)
    
        foTC = open(outputCSV, "w")
        
        print("# slamdunk tcperutr v" + __version__, file=foTC)
        
        reverseAllPerPosRev = allPerPosRev[::-1]
        reverseTcPerPosRev = tcPerPosRev[::-1]
        reverseTotalUtrCountRev = totalUtrCountRev[::-1]

        for i in range(0, utrNormFactor):
            print(allPerPosFwd[i], reverseAllPerPosRev[i], tcPerPosFwd[i], reverseTcPerPosRev[i], totalUtrCountFwd[i], reverseTotalUtrCountRev[i], sep='\t', file=foTC)
        foTC.close()
       
    if(not checkStep([outputCSV], [outputPDF], force)):
        print("Skipped computing T->C per UTR position plot for file " + bam, file=log)
    else: 
        callR(getPlotter("conversion_per_read_position") + " -u -i " + outputCSV + " -o " + outputPDF, log, dry=printOnly, verbose=verbose)