コード例 #1
0
    def __init__(self, path):
        super(emgFeature, self).__init__()
        netParams = snn.params(path + '/network.yaml')
        # initialize slayer
        slayer = snn.loihi(netParams['neuron'], netParams['simulation'])
        self.slayer = slayer
        # define network functions
        self.fc1 = slayer.dense(16, 128)
        self.fc2 = slayer.dense(128, 128)
        self.fc3 = slayer.dense(128, 5)
        self.delay1 = slayer.delay(128)
        self.delay2 = slayer.delay(128)

        self.fc1.weight.data = torch.FloatTensor(
            np.load(path + '/Trained/fc1Weights.npy').reshape(
                self.fc1.weight.shape))
        self.fc2.weight.data = torch.FloatTensor(
            np.load(path + '/Trained/fc2Weights.npy').reshape(
                self.fc2.weight.shape))
        self.fc3.weight.data = torch.FloatTensor(
            np.load(path + '/Trained/fc3Weights.npy').reshape(
                self.fc3.weight.shape))

        self.delay1.delay.data = torch.FloatTensor(
            np.load(path + '/Trained/delay1.npy').reshape(
                self.delay1.delay.shape))
        self.delay2.delay.data = torch.FloatTensor(
            np.load(path + '/Trained/delay2.npy').reshape(
                self.delay2.delay.shape))
コード例 #2
0
    def __init__(self, path):
        super(dvsFeature, self).__init__()
        netParams = snn.params(path + '/network.yaml')
        # initialize slayer
        slayer = snn.loihi(netParams['neuron'], netParams['simulation'])
        self.slayer = slayer
        # define network functions
        self.conv1 = slayer.conv( 2,  8, 3, padding=1, weightScale=20)
        self.conv2 = slayer.conv( 8, 16, 3, padding=1, weightScale=100)
        self.conv3 = slayer.conv(16, 32, 3, padding=1, weightScale=100)
        self.fc1   = slayer.dense((10*10*32), 512)
        self.fc2   = slayer.dense(512, 5)
        self.pool1 = slayer.pool(2)
        self.pool2 = slayer.pool(2)

        self.fc1  .weight.data = torch.FloatTensor(np.load(path + '/Trained/fc1Weights.npy'  ).reshape(self.fc1  .weight.shape))
        self.fc2  .weight.data = torch.FloatTensor(np.load(path + '/Trained/fc2Weights.npy'  ).reshape(self.fc2  .weight.shape))
        self.conv1.weight.data = torch.FloatTensor(np.load(path + '/Trained/conv1Weights.npy').reshape(self.conv1.weight.shape))
        self.conv2.weight.data = torch.FloatTensor(np.load(path + '/Trained/conv2Weights.npy').reshape(self.conv2.weight.shape))
        self.conv3.weight.data = torch.FloatTensor(np.load(path + '/Trained/conv3Weights.npy').reshape(self.conv3.weight.shape))
        self.pool1.weight.data = torch.FloatTensor(np.load(path + '/Trained/pool1Weights.npy').reshape(self.pool1.weight.shape))
        self.pool2.weight.data = torch.FloatTensor(np.load(path + '/Trained/pool2Weights.npy').reshape(self.pool2.weight.shape))
コード例 #3
0
    plt.figure(15)
    plt.hist(pool1Weights, 256)
    plt.title('pool1 weights')

    plt.figure(16)
    plt.hist(pool2Weights, 256)
    plt.title('pool2 weights')

    plt.figure(17)
    plt.hist(pool3Weights, 256)
    plt.title('pool3 weights')


if __name__ == '__main__':
    netParams = snn.params('network.yaml')

    # Define the cuda device to run the code on.
    device = torch.device('cuda')
    # deviceIds = [2, 3]

    # Create network instance.
    net = Network(netParams).to(device)
    # net = torch.nn.DataParallel(Network(netParams).to(device), device_ids=deviceIds)

    # Create snn loss instance.
    error = snn.loss(netParams, spikeLayer).to(device)

    # Define optimizer module.
    # optimizer = torch.optim.Adam(net.parameters(), lr = 0.01, amsgrad = True)
    optimizer = optimizer.Nadam(net.parameters(), lr=0.01, amsgrad=True)
コード例 #4
0
import sys, os
CURRENT_TEST_DIR = os.getcwd()
sys.path.append(CURRENT_TEST_DIR + "/../../src")

from datetime import datetime
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch.utils.data import Dataset, DataLoader
import slayerSNN as snn
from learningStats import learningStats
import zipfile
#----------------------Nacitanie potrebnych kniznic----------------------
netParams = snn.params('network.yaml') # Nacitanie konfiguracie SNN

# Definicia triedy dataset
class nmnistDataset(Dataset):
    def __init__(self, datasetPath, sampleFile, samplingTime, sampleLength):
        self.path = datasetPath # Cesta k databaze
        self.samples = np.loadtxt(sampleFile).astype('int') # Cesta k anotaciam
        self.samplingTime = samplingTime
        self.nTimeBins    = int(sampleLength / samplingTime)

    def __getitem__(self, index):
        inputIndex  = self.samples[index, 0] # Nazov suboru z anotacie
        classLabel  = self.samples[index, 1] # Trieda

        inputSpikes = snn.io.read2Dspikes(
                        self.path + str(inputIndex.item()) + '.bs2'
                        ).toSpikeTensor(torch.zeros((2,34,34,self.nTimeBins)),
                        samplingTime=self.samplingTime)# Nacitanie vzoriek
コード例 #5
0
ファイル: train_snn.py プロジェクト: suhaybi/VT_SNN
                    help="Batch Size.",
                    required=True)

parser.add_argument(
    "--loss",
    type=str,
    help="Loss function to use.",
    choices=["NumSpikes", "WeightedNumSpikes"],
    required=True,
)

args = parser.parse_args()

LOSS_TYPES = ["NumSpikes", "WeightedNumSpikes"]

params = snn.params(args.network_config)

if args.task == "cw":
    output_size = 20
elif args.task == "slip":
    output_size = 2
elif args.task == "ycb":
    output_size = 36
else:
    raise ValueError("Invalid args.task")

if args.mode == "tact":
    model = SlayerMLP
    model_args = {
        "params": params,
        "input_size": 156 if args.fingers == "both" else 78,
コード例 #6
0
import sys, os

CURRENT_TEST_DIR = os.path.dirname(os.path.realpath(__file__))
sys.path.append(CURRENT_TEST_DIR + "/../src")

import unittest
import numpy as np
import matplotlib.pyplot as plt
import torch
import slayerSNN as snn
import slayerCuda

device = torch.device('cuda')
Ts = 0.1

netParams = snn.params('test_files/nmnistNet.yaml')

slayer = snn.layer(netParams['neuron'], netParams['simulation']).to(device)

# (N, C, H, W, D) = (2, 5, 6, 7, 50)
(N, C, H, W, D) = (5, 10, 20, 30, 500)
# Uncomment this to test large neuron sizes
# (N, C, H, W, D) = (5, 16, 128, 128, 500)

delay = slayer.delay((C, H, W)).to(device)

inTensor = torch.randn((N, C, H, W, D)).to(device)

def checkShift(inTensor, outTensor, shift, verbose=False):
	if shift > 0:
		error = torch.norm(inTensor[:-shift] - outTensor[shift:]).item()
コード例 #7
0
# train a multilayer SNN to produce spike raster that resembles Oxford house.
# The input and output both consists of 200 neurons each and the spkes span
# approximately 1900ms. The input and output spike pair are taken from
# SuperSpike repository (https://github.com/fzenke/pub2018superspike).
###############################################################################
import sys, os
CURRENT_TEST_DIR = os.getcwd()
sys.path.append(CURRENT_TEST_DIR + "/../../src")

import numpy as np
import matplotlib.pyplot as plt
import torch
import slayerSNN as snn

# Read SNN configuration from yaml file
netParams = snn.params('oxford.yaml')

Ts = netParams['simulation']['Ts']
Ns = int(netParams['simulation']['tSample'] / netParams['simulation']['Ts'])
Nin = int(netParams['layer'][0]['dim'])
Nhid = int(netParams['layer'][1]['dim'])
Nout = int(netParams['layer'][2]['dim'])


# Define the network
class Network(torch.nn.Module):
    def __init__(self, netParams):
        super(Network, self).__init__()
        # initialize slayer
        slayer = snn.loihi(netParams['neuron'], netParams['simulation'])
        self.slayer = slayer
コード例 #8
0

# Extract NMNISTsmall dataset
with zipfile.ZipFile('NMNISTsmall.zip') as zip_file:
    for member in zip_file.namelist():
        if not os.path.exists('./' + member):
            zip_file.extract(member, './')

if __name__ == '__main__':
    modelName = 'nmnist'
    trainedFolder = 'Trained'
    os.makedirs(trainedFolder, exist_ok=True)
    device = torch.device('cuda')

    # create params object from dictionary / yaml file
    netParams = snn.params(dict=netDesc)

    # automatically create the network
    net = snn.auto.loihi.Network(netParams).to(device)
    module = net

    # Create snn loss instance.
    error = snn.loss(netParams, snn.loihi).to(device)

    # Define optimizer module.
    optimizer = snn.utils.optim.Nadam(net.parameters(), lr=0.01, amsgrad=True)

    # Create training and testing dataset
    trainingSet = snn.auto.dataset(
        dataset=nmnistDataset('NMNISTsmall', train=True),
        network=net,
コード例 #9
0
        np.save('Trained/pool{:d}Weights.npy'.format(i + 1),
                poolWeights[i].squeeze())
        plt.figure()
        plt.hist(poolWeights[i].flatten(), 256)
        plt.title('pool{:d} weights'.format(i + 1))

    for i in range(len(delay)):
        np.save('Trained/delay{:d}.npy'.format(i + 1), delay[i].squeeze())
        plt.figure()
        plt.hist(delay[i].flatten(), 64)
        plt.title('delay{:d}'.format(i + 1))


if __name__ == '__main__':

    netParams = snn.params('network.yaml')

    print('vDecay:', netParams['neuron']['vDecay'])
    print('iDecay:', netParams['neuron']['iDecay'])

    # Define the cuda device to run the code on.
    device = torch.device('cuda:2')
    # deviceIds = [1, 2]

    # Create network instance.
    net = Network(netParams).to(device)
    # net = torch.nn.DataParallel(Network(netParams).to(device), device_ids=deviceIds)

    # Create snn loss instance.
    error = snn.loss(netParams, snn.loihi).to(device)
コード例 #10
0
import sys, os

CURRENT_TEST_DIR = os.path.dirname(os.path.realpath(__file__))
sys.path.append(CURRENT_TEST_DIR + "/../src")

import copy
import numpy as np
import matplotlib.pyplot as plt
import torch
import slayerSNN as snn
from learningStats import learningStats

###############################################################################
# oxford spike learning ######################################################
netParams = snn.params("oxford/oxford.yaml")

Ts = netParams['simulation']['Ts']
Ns = int(netParams['simulation']['tSample'] / netParams['simulation']['Ts'])
Nin = int(netParams['layer'][0]['dim'])
Nhid = int(netParams['layer'][1]['dim'])
Nout = int(netParams['layer'][2]['dim'])

device = torch.device('cuda:3')


class Network(torch.nn.Module):
    def __init__(self, netParams):
        super(Network, self).__init__()
        # initialize slayer
        slayer = snn.layer(netParams['neuron'], netParams['simulation'])
コード例 #11
0
import unittest
import numpy as np
import matplotlib.pyplot as plt
import torch
import slayerSNN as snn

# Testing filter banks

verbose = True if (('-v' in sys.argv) or ('--verbose' in sys.argv)) else False

# Select device to run code on
device = torch.device('cuda')

# Initialization
netParams = snn.params('test_files/snnData/network.yaml')

N = 5  # number of batch
Ts = netParams['simulation']['Ts']
Ns = int(netParams['simulation']['tSample'] / Ts)
C = 8
H = 16
W = 16

nFilter = 5
slayer = snn.layer(netParams['neuron'], netParams['simulation']).to(device)
pspFilter = slayer.pspFilter(nFilter=nFilter,
                             filterLength=slayer.srmKernel.numel()).to(device)

# Generate spikes
# input spikes