コード例 #1
0
def test_inference_merging():
    skeleton = Skeleton()
    video = Video(backend=MediaVideo)
    lf_user_only = LabeledFrame(video=video,
                                frame_idx=0,
                                instances=[Instance(skeleton=skeleton)])
    lf_pred_only = LabeledFrame(
        video=video,
        frame_idx=1,
        instances=[PredictedInstance(skeleton=skeleton)])
    lf_both = LabeledFrame(
        video=video,
        frame_idx=2,
        instances=[
            Instance(skeleton=skeleton),
            PredictedInstance(skeleton=skeleton)
        ],
    )
    labels = Labels([lf_user_only, lf_pred_only, lf_both])

    task = runners.InferenceTask(
        trained_job_paths=None,
        inference_params=None,
        labels=labels,
        results=[
            LabeledFrame(
                video=labels.video,
                frame_idx=2,
                instances=[
                    PredictedInstance(skeleton=skeleton),
                    PredictedInstance(skeleton=skeleton),
                ],
            )
        ],
    )
    task.merge_results()

    assert len(labels) == 3
    assert labels[0].frame_idx == 0
    assert labels[0].has_user_instances
    assert labels[1].frame_idx == 1
    assert labels[1].has_predicted_instances
    assert labels[2].frame_idx == 2
    assert len(labels[2].user_instances) == 1
    assert len(labels[2].predicted_instances) == 2
コード例 #2
0
def test_inference_cli_output_path():
    inference_task = runners.InferenceTask(
        trained_job_paths=["model1", "model2"],
        inference_params=dict(),
    )

    item_for_inference = runners.VideoItemForInference(
        video=Video.from_filename("video.mp4"),
        frames=[1, 2, 3],
    )

    # Try with specified output path
    cli_args, output_path = inference_task.make_predict_cli_call(
        item_for_inference,
        output_path="another_output_path.slp",
    )

    assert output_path == "another_output_path.slp"
    assert "another_output_path.slp" in cli_args
コード例 #3
0
def test_inference_cli_builder():

    inference_task = runners.InferenceTask(
        trained_job_paths=["model1", "model2"],
        inference_params={"tracking.tracker": "simple"},
    )

    item_for_inference = runners.VideoItemForInference(
        video=Video.from_filename("video.mp4"),
        frames=[1, 2, 3],
    )

    cli_args, output_path = inference_task.make_predict_cli_call(
        item_for_inference)

    assert cli_args[0] == "sleap-track"
    assert cli_args[1] == "video.mp4"
    assert "model1" in cli_args
    assert "model2" in cli_args
    assert "--frames" in cli_args
    assert "--tracking.tracker" in cli_args

    assert output_path.startswith("video.mp4")
    assert output_path.endswith("predictions.slp")