コード例 #1
0
ファイル: imagedir.py プロジェクト: xuerenjie124/sleap
    def poll(self):
        path = os.path.join(self.directory, self.getFilterMask())
        print(f"Polling: {path}")

        files = glob.glob(path)
        files.sort()

        if not files:
            return

        if files != self.files:
            was_on_last_image = False
            if self.video is None:
                was_on_last_image = True
                self.show()
            elif self.state["frame_idx"] == self.video.last_frame_idx:
                was_on_last_image = True

            self.files = files
            self.video = Video.from_image_filenames(filenames=files)
            self.load_video(video=self.video)

            if was_on_last_image:
                self.state["frame_idx"] = self.video.last_frame_idx
            elif self.state["frame_idx"]:
                self.state["frame_idx"] = min(self.state["frame_idx"],
                                              self.video.last_frame_idx)
コード例 #2
0
ファイル: imagedir.py プロジェクト: stallam-unb/sleap
    def poll(self):
        """Re-scans directory (using current filter) and updates widget."""
        path = os.path.join(self.directory, self._current_filter_mask)
        print(f"Polling: {path}")

        files = glob.glob(path)
        files.sort()

        if not files:
            return

        if files != self.files:
            was_on_last_image = False
            if self.video is None:
                was_on_last_image = True
                self.show()
            elif self.state["frame_idx"] == self.video.last_frame_idx:
                was_on_last_image = True

            self.files = files
            self.video = Video.from_image_filenames(filenames=files)
            self.load_video(video=self.video)

            if was_on_last_image:
                self.state["frame_idx"] = self.video.last_frame_idx
            elif self.state["frame_idx"]:
                self.state["frame_idx"] = min(self.state["frame_idx"],
                                              self.video.last_frame_idx)
コード例 #3
0
ファイル: deeplabcut.py プロジェクト: stallam-unb/sleap
    def make_video_for_image_list(cls, image_dir, filenames) -> Video:
        """Creates a Video object from frame images."""

        # the image filenames in the csv may not match where the user has them
        # so we'll change the directory to match where the user has the csv
        def fix_img_path(img_dir, img_filename):
            img_filename = img_filename.replace("\\", "/")
            img_filename = os.path.basename(img_filename)
            img_filename = os.path.join(img_dir, img_filename)
            return img_filename

        filenames = list(map(lambda f: fix_img_path(image_dir, f), filenames))

        return Video.from_image_filenames(filenames)
コード例 #4
0
    def read(
        cls,
        file: FileHandle,
        img_dir: str,
        use_missing_gui: bool = False,
        *args,
        **kwargs,
    ) -> Labels:

        dicts = file.json

        # Make skeletons from "categories"
        skeleton_map = dict()
        for category in dicts["categories"]:
            skeleton = Skeleton(name=category["name"])
            skeleton_id = category["id"]
            node_names = category["keypoints"]
            skeleton.add_nodes(node_names)

            try:
                for src_idx, dst_idx in category["skeleton"]:
                    skeleton.add_edge(node_names[src_idx], node_names[dst_idx])
            except IndexError as e:
                # According to the COCO data format specifications[^1], the edges
                # are supposed to be 1-indexed. But in some of their own
                # dataset the edges are 1-indexed! So we'll try.
                # [1]: http://cocodataset.org/#format-data

                # Clear any edges we already created using 0-indexing
                skeleton.clear_edges()

                # Add edges
                for src_idx, dst_idx in category["skeleton"]:
                    skeleton.add_edge(node_names[src_idx - 1], node_names[dst_idx - 1])

            skeleton_map[skeleton_id] = skeleton

        # Make videos from "images"

        # Remove images that aren't referenced in the annotations
        img_refs = [annotation["image_id"] for annotation in dicts["annotations"]]
        dicts["images"] = list(filter(lambda im: im["id"] in img_refs, dicts["images"]))

        # Key in JSON file should be "file_name", but sometimes it's "filename",
        # so we have to check both.
        img_filename_key = "file_name"
        if img_filename_key not in dicts["images"][0].keys():
            img_filename_key = "filename"

        # First add the img_dir to each image filename
        img_paths = [
            os.path.join(img_dir, image[img_filename_key]) for image in dicts["images"]
        ]

        # See if there are any missing files
        img_missing = [not os.path.exists(path) for path in img_paths]

        if sum(img_missing):
            if use_missing_gui:
                okay = MissingFilesDialog(img_paths, img_missing).exec_()

                if not okay:
                    return None
            else:
                raise FileNotFoundError(
                    f"Images for COCO dataset could not be found in {img_dir}."
                )

        # Update the image paths (with img_dir or user selected path)
        for image, path in zip(dicts["images"], img_paths):
            image[img_filename_key] = path

        # Create the video objects for the image files
        image_video_map = dict()

        vid_id_video_map = dict()
        for image in dicts["images"]:
            image_id = image["id"]
            image_filename = image[img_filename_key]

            # Sometimes images have a vid_id which links multiple images
            # together as one video. If so, we'll use that as the video key.
            # But if there isn't a vid_id, we'll treat each images as a
            # distinct video and use the image id as the video id.
            vid_id = image.get("vid_id", image_id)

            if vid_id not in vid_id_video_map:
                kwargs = dict(filenames=[image_filename])
                for key in ("width", "height"):
                    if key in image:
                        kwargs[key] = image[key]

                video = Video.from_image_filenames(**kwargs)
                vid_id_video_map[vid_id] = video
                frame_idx = 0
            else:
                video = vid_id_video_map[vid_id]
                frame_idx = video.num_frames
                video.backend.filenames.append(image_filename)

            image_video_map[image_id] = (video, frame_idx)

        # Make instances from "annotations"
        lf_map = dict()
        track_map = dict()
        for annotation in dicts["annotations"]:
            skeleton = skeleton_map[annotation["category_id"]]
            image_id = annotation["image_id"]
            video, frame_idx = image_video_map[image_id]
            keypoints = np.array(annotation["keypoints"], dtype="int").reshape(-1, 3)

            track = None
            if "track_id" in annotation:
                track_id = annotation["track_id"]
                if track_id not in track_map:
                    track_map[track_id] = Track(frame_idx, str(track_id))
                track = track_map[track_id]

            points = dict()
            any_visible = False
            for i in range(len(keypoints)):
                node = skeleton.nodes[i]
                x, y, flag = keypoints[i]

                if flag == 0:
                    # node not labeled for this instance
                    continue

                is_visible = flag == 2
                any_visible = any_visible or is_visible
                points[node] = Point(x, y, is_visible)

            if points:
                # If none of the points had 2 has the "visible" flag, we'll
                # assume this incorrect and just mark all as visible.
                if not any_visible:
                    for point in points.values():
                        point.visible = True

                inst = Instance(skeleton=skeleton, points=points, track=track)

                if image_id not in lf_map:
                    lf_map[image_id] = LabeledFrame(video, frame_idx)

                lf_map[image_id].insert(0, inst)

        return Labels(labeled_frames=list(lf_map.values()))