コード例 #1
0
def _build_pnasnet_base(images,
                        normal_cell,
                        num_classes,
                        hparams,
                        is_training,
                        final_endpoint=None):
    """Constructs a PNASNet image model."""

    end_points = {}

    def add_and_check_endpoint(endpoint_name, net):
        end_points[endpoint_name] = net
        return final_endpoint and (endpoint_name == final_endpoint)

    # Find where to place the reduction cells or stride normal cells
    reduction_indices = nasnet_utils.calc_reduction_layers(
        hparams.num_cells, hparams.num_reduction_layers)

    # pylint: disable=protected-access
    stem = lambda: nasnet._imagenet_stem(images, hparams, normal_cell)
    # pylint: enable=protected-access
    net, cell_outputs = stem()
    if add_and_check_endpoint('Stem', net):
        return net, end_points

    # Setup for building in the auxiliary head.
    aux_head_cell_idxes = []
    if len(reduction_indices) >= 2:
        aux_head_cell_idxes.append(reduction_indices[1] - 1)

    # Run the cells
    filter_scaling = 1.0
    # true_cell_num accounts for the stem cells
    true_cell_num = 2
    for cell_num in range(hparams.num_cells):
        is_reduction = cell_num in reduction_indices
        stride = 2 if is_reduction else 1
        if is_reduction: filter_scaling *= hparams.filter_scaling_rate
        if hparams.skip_reduction_layer_input or not is_reduction:
            prev_layer = cell_outputs[-2]
        net = normal_cell(net,
                          scope='cell_{}'.format(cell_num),
                          filter_scaling=filter_scaling,
                          stride=stride,
                          prev_layer=prev_layer,
                          cell_num=true_cell_num)
        if add_and_check_endpoint('Cell_{}'.format(cell_num), net):
            return net, end_points
        true_cell_num += 1
        cell_outputs.append(net)

        if (hparams.use_aux_head and cell_num in aux_head_cell_idxes
                and num_classes and is_training):
            aux_net = tf.nn.relu(net)
            # pylint: disable=protected-access
            nasnet._build_aux_head(aux_net,
                                   end_points,
                                   num_classes,
                                   hparams,
                                   scope='aux_{}'.format(cell_num))
            # pylint: enable=protected-access

    # Final softmax layer
    with tf.variable_scope('final_layer'):
        net = tf.nn.relu(net)
        net = nasnet_utils.global_avg_pool(net)
        if add_and_check_endpoint('global_pool', net) or not num_classes:
            return net, end_points
        net = slim.dropout(net,
                           hparams.dense_dropout_keep_prob,
                           scope='dropout')
        logits = slim.fully_connected(net, num_classes)

        if add_and_check_endpoint('Logits', logits):
            return net, end_points

        predictions = tf.nn.softmax(logits, name='predictions')
        if add_and_check_endpoint('Predictions', predictions):
            return net, end_points
    return logits, end_points
コード例 #2
0
def _build_nasnet_base(images,
                       normal_cell,
                       reduction_cell,
                       num_classes,
                       hparams,
                       is_training,
                       stem_type,
                       final_endpoint=None,
                       current_step=None):
  """Constructs a NASNet image model."""

  end_points = {}
  def add_and_check_endpoint(endpoint_name, net):
    end_points[endpoint_name] = net
    return final_endpoint and (endpoint_name == final_endpoint)

  # Find where to place the reduction cells or stride normal cells
  reduction_indices = nasnet_utils.calc_reduction_layers(
      hparams.num_cells, hparams.num_reduction_layers)
  stem_cell = reduction_cell

  if stem_type == 'imagenet':
    stem = lambda: _imagenet_stem(images, hparams, stem_cell)
  elif stem_type == 'cifar':
    stem = lambda: _cifar_stem(images, hparams)
  else:
    raise ValueError('Unknown stem_type: ', stem_type)
  net, cell_outputs = stem()
  if add_and_check_endpoint('Stem', net): return net, end_points

  # Setup for building in the auxiliary head.
  aux_head_cell_idxes = []
  if len(reduction_indices) >= 2:
    aux_head_cell_idxes.append(reduction_indices[1] - 1)

  # Run the cells
  filter_scaling = 1.0
  # true_cell_num accounts for the stem cells
  true_cell_num = 2 if stem_type == 'imagenet' else 0
  activation_fn = tf.nn.relu6 if hparams.use_bounded_activation else tf.nn.relu
  for cell_num in range(hparams.num_cells):
    stride = 1
    if hparams.skip_reduction_layer_input:
      prev_layer = cell_outputs[-2]
    if cell_num in reduction_indices:
      filter_scaling *= hparams.filter_scaling_rate
      net = reduction_cell(
          net,
          scope='reduction_cell_{}'.format(reduction_indices.index(cell_num)),
          filter_scaling=filter_scaling,
          stride=2,
          prev_layer=cell_outputs[-2],
          cell_num=true_cell_num,
          current_step=current_step)
      if add_and_check_endpoint(
          'Reduction_Cell_{}'.format(reduction_indices.index(cell_num)), net):
        return net, end_points
      true_cell_num += 1
      cell_outputs.append(net)
    if not hparams.skip_reduction_layer_input:
      prev_layer = cell_outputs[-2]
    net = normal_cell(
        net,
        scope='cell_{}'.format(cell_num),
        filter_scaling=filter_scaling,
        stride=stride,
        prev_layer=prev_layer,
        cell_num=true_cell_num,
        current_step=current_step)

    if add_and_check_endpoint('Cell_{}'.format(cell_num), net):
      return net, end_points
    true_cell_num += 1
    if (hparams.use_aux_head and cell_num in aux_head_cell_idxes and
        num_classes and is_training):
      aux_net = activation_fn(net)
      _build_aux_head(aux_net, end_points, num_classes, hparams,
                      scope='aux_{}'.format(cell_num))
    cell_outputs.append(net)

  # Final softmax layer
  with tf.variable_scope('final_layer'):
    net = activation_fn(net)
    net = nasnet_utils.global_avg_pool(net)
    if add_and_check_endpoint('global_pool', net) or not num_classes:
      return net, end_points
    net = slim.dropout(net, hparams.dense_dropout_keep_prob, scope='dropout')
    logits = slim.fully_connected(net, num_classes)

    if add_and_check_endpoint('Logits', logits):
      return net, end_points

    predictions = tf.nn.softmax(logits, name='predictions')
    if add_and_check_endpoint('Predictions', predictions):
      return net, end_points
  return logits, end_points
コード例 #3
0
 def testGlobalAvgPool(self):
     data_formats = ['NHWC', 'NCHW']
     inputs = tf.placeholder(tf.float32, (5, 10, 20, 10))
     for data_format in data_formats:
         output = nasnet_utils.global_avg_pool(inputs, data_format)
         self.assertEqual(output.shape, [5, 10])