コード例 #1
0
def get_base_network(inputs,
                     name='resnet50',
                     weight_decay=1e-6,
                     training=True):
    if name == 'resnet50':
        with slim.arg_scope(
                resnet_v2.resnet_arg_scope(weight_decay=weight_decay)):
            logits, end_points = resnet_v2.resnet_v2_50(inputs,
                                                        is_training=training)
    elif name == 'inception-resnet':
        with slim.arg_scope(
                inception_resnet_v2.inception_resnet_v2_arg_scope(
                    weight_decay=weight_decay)):
            logits, end_points = inception_resnet_v2.inception_resnet_v2(
                inputs, is_training=training)
    else:
        with slim.arg_scope(
                resnet_v2.resnet_arg_scope(weight_decay=weight_decay)):
            logits, end_points = resnet_v2.resnet_v2_101(inputs,
                                                         is_training=training)
    var_list_restore = {}
    for i in end_points:
        name = i.replace('generator/', '')
        var_list_restore[i] = name
    return var_list_restore, end_points
コード例 #2
0
    def get_res_network(self, inputs, name='resnet50', weight_decay=0.00001):
        #with inception_resnet_v2.inception_resnet_v2_arg_scope(weight_decay=weight_decay):
        # _, end_points2 = inception_resnet_v2.inception_resnet_v2(inputs, is_training=self.training)
        # for i in end_points2:
        #     print(end_points2[i])

        if name == 'resnet50':
            with slim.arg_scope(
                    resnet_v2.resnet_arg_scope(weight_decay=weight_decay)):
                logits, end_points = resnet_v2.resnet_v2_50(
                    inputs, is_training=self.training)

        else:
            print('now only support resnet 50')
            ###  TO  DO
            with slim.arg_scope(
                    resnet_v2.resnet_arg_scope(weight_decay=weight_decay)):
                logits, end_points = resnet_v2.resnet_v2_50(
                    inputs, is_training=self.training)

        return logits, end_points
コード例 #3
0
ファイル: models.py プロジェクト: hhwxxx/mask_regression
def resnet_v2_50(images, is_training):
    # images size is (None, 224, 224, 3), which is equal to default image size of ResNet-50.
    # net is final output without activation.
    fine_tune_batch_norm = False
    with slim.arg_scope(
            resnet_v2.resnet_arg_scope(batch_norm_decay=BATCH_NORM_DECAY)):
        net, end_points = resnet_v2.resnet_v2_50(
            inputs=images,
            num_classes=NUMBER_OUTPUT,
            is_training=(is_training and fine_tune_batch_norm),
            global_pool=True,
            spatial_squeeze=True,
            scope='resnet_v2_50')

    return net
コード例 #4
0
def predict(models_path, image_dir, labels_filename, labels_nums, data_format):
    [batch_size, resize_height, resize_width, depths] = data_format

    labels = np.loadtxt(labels_filename, str, delimiter='\t')
    input_images = tf.placeholder(
        dtype=tf.float32,
        shape=[None, resize_height, resize_width, depths],
        name='input')

    with slim.arg_scope(resnet.resnet_arg_scope()):
        out, end_points = resnet.resnet_v2_50(inputs=input_images,
                                              num_classes=labels_nums,
                                              is_training=False)

    # 将输出结果进行softmax分布,再求最大概率所属类别
    score = tf.nn.softmax(out, name='pre')
    class_id = tf.argmax(score, 1)

    sess = tf.InteractiveSession()
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.restore(sess, models_path)
    images_list = glob.glob(os.path.join(image_dir, '*.jpg'))
    score_total = 0
    for image_path in images_list:
        im = read_image(image_path,
                        resize_height,
                        resize_width,
                        normalization=True)
        im = im[np.newaxis, :]
        #pred = sess.run(f_cls, feed_dict={x:im, keep_prob:1.0})
        pre_score, pre_label = sess.run([score, class_id],
                                        feed_dict={input_images: im})
        max_score = pre_score[0, pre_label]
        #print("{} is: pre labels:{},name:{} score: {}".format(image_path, pre_label, labels[pre_label], max_score))
        if image_path.split(".jpg")[0].split("-")[2] == labels[pre_label]:
            score_total += 1
        else:
            print("{} is predicted as label::{} ".format(
                image_path, labels[pre_label]))

    print("valuation accuracy is {}".format(score_total / len(images_list)))
    sess.close()
コード例 #5
0
def cnn_model(features, labels, mode):
    images = features['images']
    filenames = features['filenames']
    onehot_labels = labels
    axillary_labels = features['axillary_labels']

    if FLAGS.network == 'alexnet':
        # Format data
        if FLAGS.data_format == 'NCHW':
            print(colored("Converting data format to channels first (NCHW)", \
                    'blue'))
            images = tf.transpose(images, [0, 3, 1, 2])

        # Setup batch normalization
        if mode == tf.estimator.ModeKeys.TRAIN:
            norm_params={'is_training':True, 
                    'data_format': FLAGS.data_format}
        else:
            norm_params={'is_training':False,
                    'data_format': FLAGS.data_format,
                    'updates_collections': None}

        # Create the network
        logits = alexnet(images, norm_params, mode) 

    elif FLAGS.network == 'resnet':
        logits, end_points = resnet_v2.resnet_v2_50(inputs=images, 
                num_classes=ts._NUM_CLASSES, 
                is_training=(mode==tf.estimator.ModeKeys.TRAIN))

    # Inference
    predicted_classes = tf.argmax(logits, 1)
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(
                mode,
                predictions={
                    'pred_class': predicted_classes,
                    'gt_class': axillary_labels,
                    'embedding': logits,
                    # 'prob': tf.nn.softmax(logits),
                })

    # Training 
    groundtruth_classes = tf.argmax(onehot_labels, 1)
    if FLAGS.mode == "triplet_training":
        if FLAGS.triplet_mining_method == "batchall":
            loss, fraction_positive_triplets, num_valid_triplets = \
                    triplet_loss.batch_all_triplet_loss(
                    axillary_labels, logits, FLAGS.triplet_margin)
        elif FLAGS.triplet_mining_method == "batchhard":
            loss = triplet_loss.batch_hard_triplet_loss(
                    axillary_labels, logits, FLAGS.triplet_margin)
        else:
            "ERROR: Wrong Triplet loss mining method, using softmax"
            loss = tf.losses.softmax_cross_entropy(
                    onehot_labels=onehot_labels, logits=logits)
        if FLAGS.loss_mode == "mix":
            loss += tf.losses.softmax_cross_entropy(
                    onehot_labels=onehot_labels, logits=logits)

    else:
        loss = tf.losses.softmax_cross_entropy(
                onehot_labels=onehot_labels, logits=logits)

    if mode == tf.estimator.ModeKeys.TRAIN:
        if FLAGS.optimizer == 'GD':
            decay_factor = 0.96
            learning_rate = tf.train.exponential_decay(FLAGS.learning_rate,
                    tf.train.get_global_step(),
                    int(math.ceil(float(ts._SPLITS_TO_SIZES['train'] / 
                        FLAGS.batch_size))),
                    decay_factor)
            optimizer = tf.train.GradientDescentOptimizer(
                    learning_rate=learning_rate)
        elif FLAGS.optimizer == 'Momentum':
            decay_factor = 0.96
            learning_rate = tf.train.exponential_decay(FLAGS.learning_rate,
                    tf.train.get_global_step(),
                    int(math.ceil(float(ts._SPLITS_TO_SIZES['train'] / 
                        FLAGS.batch_size))),
                    decay_factor)
            optimizer = tf.train.MomentumOptimizer(
                    learning_rate=learning_rate, momentum=0.9)
        else:
            optimizer = tf.train.AdamOptimizer(
                    learning_rate=FLAGS.learning_rate)

        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            train_op = optimizer.minimize(loss, 
                    global_step=tf.train.get_global_step())
            return tf.estimator.EstimatorSpec(
                    mode, loss=loss, train_op=train_op)

    # Testing
    # top_5 = tf.metrics.precision_at_top_k(
            # labels=groundtruth_classes, 
            # predictions=predicted_classes,
            # k = 5)
    # top_10 = tf.metrics.precision_at_top_k(
            # labels=groundtruth_classes, 
            # predictions=predicted_classes,
            # k = 10)
    eval_metric_ops = {
            'eval/accuracy': tf.metrics.accuracy(
                labels=groundtruth_classes, 
                predictions=predicted_classes),
            # 'eval/accuracy_top5': top_5,
            # 'eval/accuracy_top10': top_10,
            }
    return tf.estimator.EstimatorSpec(
            mode, loss=loss, eval_metric_ops=eval_metric_ops)
コード例 #6
0
def train(train_record_file, train_log_step, train_param, val_record_file,
          val_log_step, labels_nums, data_shape, snapshot, snapshot_prefix):
    '''
    :param train_record_file: 训练的tfrecord文件
    :param train_log_step: 显示训练过程log信息间隔
    :param train_param: train参数
    :param val_record_file: 验证的tfrecord文件
    :param val_log_step: 显示验证过程log信息间隔
    :param val_param: val参数
    :param labels_nums: labels数
    :param data_shape: 输入数据shape
    :param snapshot: 保存模型间隔
    :param snapshot_prefix: 保存模型文件的前缀名
    :return:
    '''
    [base_lr, max_steps] = train_param
    [batch_size, resize_height, resize_width, depths] = data_shape

    # 获得训练和测试的样本数
    train_nums = get_example_nums(train_record_file)
    val_nums = get_example_nums(val_record_file)
    print('train nums:%d,val nums:%d' % (train_nums, val_nums))

    regularizer = slim.l2_regularizer(0.0005)
    # 从record中读取图片和labels数据
    # train数据,训练数据一般要求打乱顺序shuffle=True
    train_images, train_labels = read_records(train_record_file,
                                              resize_height,
                                              resize_width,
                                              type='normalization')
    train_images_batch, train_labels_batch = get_batch_images(
        train_images,
        train_labels,
        batch_size=batch_size,
        labels_nums=labels_nums,
        one_hot=True,
        shuffle=True)
    # val数据,验证数据可以不需要打乱数据
    val_images, val_labels = read_records(val_record_file,
                                          resize_height,
                                          resize_width,
                                          type='normalization')
    val_images_batch, val_labels_batch = get_batch_images(
        val_images,
        val_labels,
        batch_size=batch_size,
        labels_nums=labels_nums,
        one_hot=True,
        shuffle=False)

    # Define the model:
    with slim.arg_scope(resnet.resnet_arg_scope()):
        out, end_points = resnet.resnet_v2_50(inputs=input_images,
                                              num_classes=labels_nums,
                                              is_training=is_training)

    # Specify the loss function: tf.losses定义的loss函数都会自动添加到loss函数,不需要add_loss()了
    tf.losses.softmax_cross_entropy(onehot_labels=input_labels,
                                    logits=out)  #添加交叉熵损失loss=1.6
    # slim.losses.add_loss(my_loss)
    loss = tf.losses.get_total_loss(
        add_regularization_losses=True)  #添加正则化损失loss=2.2
    accuracy = tf.reduce_mean(
        tf.cast(tf.equal(tf.argmax(out, 1), tf.argmax(input_labels, 1)),
                tf.float32))

    score = tf.nn.softmax(out, name='score')
    classIds = tf.argmax(out, 1)
    # Specify the optimization scheme:
    # optimizer = tf.train.GradientDescentOptimizer(learning_rate=base_lr)

    # global_step = tf.Variable(0, trainable=False)
    # learning_rate = tf.train.exponential_decay(0.05, global_step, 150, 0.9)
    #
    optimizer = tf.train.MomentumOptimizer(learning_rate=base_lr, momentum=0.9)
    # # train_tensor = optimizer.minimize(loss, global_step)
    # train_op = slim.learning.create_train_op(loss, optimizer,global_step=global_step)

    # 在定义训练的时候, 注意到我们使用了`batch_norm`层时,需要更新每一层的`average`和`variance`参数,
    # 更新的过程不包含在正常的训练过程中, 需要我们去手动像下面这样更新
    # 通过`tf.get_collection`获得所有需要更新的`op`
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    # 使用`tensorflow`的控制流, 先执行更新算子, 再执行训练
    with tf.control_dependencies(update_ops):
        # create_train_op that ensures that when we evaluate it to get the loss,
        # the update_ops are done and the gradient updates are computed.
        # train_op = slim.learning.create_train_op(total_loss=loss,optimizer=optimizer)
        train_op = slim.learning.create_train_op(total_loss=loss,
                                                 optimizer=optimizer)

    # 循环迭代过程
    step_train(train_op, loss, accuracy, score, classIds, train_images_batch,
               train_labels_batch, train_nums, train_log_step,
               val_images_batch, val_labels_batch, val_nums, val_log_step,
               snapshot_prefix, snapshot)