def get_base_network(inputs, name='resnet50', weight_decay=1e-6, training=True): if name == 'resnet50': with slim.arg_scope( resnet_v2.resnet_arg_scope(weight_decay=weight_decay)): logits, end_points = resnet_v2.resnet_v2_50(inputs, is_training=training) elif name == 'inception-resnet': with slim.arg_scope( inception_resnet_v2.inception_resnet_v2_arg_scope( weight_decay=weight_decay)): logits, end_points = inception_resnet_v2.inception_resnet_v2( inputs, is_training=training) else: with slim.arg_scope( resnet_v2.resnet_arg_scope(weight_decay=weight_decay)): logits, end_points = resnet_v2.resnet_v2_101(inputs, is_training=training) var_list_restore = {} for i in end_points: name = i.replace('generator/', '') var_list_restore[i] = name return var_list_restore, end_points
def get_res_network(self, inputs, name='resnet50', weight_decay=0.00001): #with inception_resnet_v2.inception_resnet_v2_arg_scope(weight_decay=weight_decay): # _, end_points2 = inception_resnet_v2.inception_resnet_v2(inputs, is_training=self.training) # for i in end_points2: # print(end_points2[i]) if name == 'resnet50': with slim.arg_scope( resnet_v2.resnet_arg_scope(weight_decay=weight_decay)): logits, end_points = resnet_v2.resnet_v2_50( inputs, is_training=self.training) else: print('now only support resnet 50') ### TO DO with slim.arg_scope( resnet_v2.resnet_arg_scope(weight_decay=weight_decay)): logits, end_points = resnet_v2.resnet_v2_50( inputs, is_training=self.training) return logits, end_points
def resnet_v2_50(images, is_training): # images size is (None, 224, 224, 3), which is equal to default image size of ResNet-50. # net is final output without activation. fine_tune_batch_norm = False with slim.arg_scope( resnet_v2.resnet_arg_scope(batch_norm_decay=BATCH_NORM_DECAY)): net, end_points = resnet_v2.resnet_v2_50( inputs=images, num_classes=NUMBER_OUTPUT, is_training=(is_training and fine_tune_batch_norm), global_pool=True, spatial_squeeze=True, scope='resnet_v2_50') return net
def predict(models_path, image_dir, labels_filename, labels_nums, data_format): [batch_size, resize_height, resize_width, depths] = data_format labels = np.loadtxt(labels_filename, str, delimiter='\t') input_images = tf.placeholder( dtype=tf.float32, shape=[None, resize_height, resize_width, depths], name='input') with slim.arg_scope(resnet.resnet_arg_scope()): out, end_points = resnet.resnet_v2_50(inputs=input_images, num_classes=labels_nums, is_training=False) # 将输出结果进行softmax分布,再求最大概率所属类别 score = tf.nn.softmax(out, name='pre') class_id = tf.argmax(score, 1) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore(sess, models_path) images_list = glob.glob(os.path.join(image_dir, '*.jpg')) score_total = 0 for image_path in images_list: im = read_image(image_path, resize_height, resize_width, normalization=True) im = im[np.newaxis, :] #pred = sess.run(f_cls, feed_dict={x:im, keep_prob:1.0}) pre_score, pre_label = sess.run([score, class_id], feed_dict={input_images: im}) max_score = pre_score[0, pre_label] #print("{} is: pre labels:{},name:{} score: {}".format(image_path, pre_label, labels[pre_label], max_score)) if image_path.split(".jpg")[0].split("-")[2] == labels[pre_label]: score_total += 1 else: print("{} is predicted as label::{} ".format( image_path, labels[pre_label])) print("valuation accuracy is {}".format(score_total / len(images_list))) sess.close()
def cnn_model(features, labels, mode): images = features['images'] filenames = features['filenames'] onehot_labels = labels axillary_labels = features['axillary_labels'] if FLAGS.network == 'alexnet': # Format data if FLAGS.data_format == 'NCHW': print(colored("Converting data format to channels first (NCHW)", \ 'blue')) images = tf.transpose(images, [0, 3, 1, 2]) # Setup batch normalization if mode == tf.estimator.ModeKeys.TRAIN: norm_params={'is_training':True, 'data_format': FLAGS.data_format} else: norm_params={'is_training':False, 'data_format': FLAGS.data_format, 'updates_collections': None} # Create the network logits = alexnet(images, norm_params, mode) elif FLAGS.network == 'resnet': logits, end_points = resnet_v2.resnet_v2_50(inputs=images, num_classes=ts._NUM_CLASSES, is_training=(mode==tf.estimator.ModeKeys.TRAIN)) # Inference predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode, predictions={ 'pred_class': predicted_classes, 'gt_class': axillary_labels, 'embedding': logits, # 'prob': tf.nn.softmax(logits), }) # Training groundtruth_classes = tf.argmax(onehot_labels, 1) if FLAGS.mode == "triplet_training": if FLAGS.triplet_mining_method == "batchall": loss, fraction_positive_triplets, num_valid_triplets = \ triplet_loss.batch_all_triplet_loss( axillary_labels, logits, FLAGS.triplet_margin) elif FLAGS.triplet_mining_method == "batchhard": loss = triplet_loss.batch_hard_triplet_loss( axillary_labels, logits, FLAGS.triplet_margin) else: "ERROR: Wrong Triplet loss mining method, using softmax" loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) if FLAGS.loss_mode == "mix": loss += tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) else: loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: if FLAGS.optimizer == 'GD': decay_factor = 0.96 learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, tf.train.get_global_step(), int(math.ceil(float(ts._SPLITS_TO_SIZES['train'] / FLAGS.batch_size))), decay_factor) optimizer = tf.train.GradientDescentOptimizer( learning_rate=learning_rate) elif FLAGS.optimizer == 'Momentum': decay_factor = 0.96 learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, tf.train.get_global_step(), int(math.ceil(float(ts._SPLITS_TO_SIZES['train'] / FLAGS.batch_size))), decay_factor) optimizer = tf.train.MomentumOptimizer( learning_rate=learning_rate, momentum=0.9) else: optimizer = tf.train.AdamOptimizer( learning_rate=FLAGS.learning_rate) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec( mode, loss=loss, train_op=train_op) # Testing # top_5 = tf.metrics.precision_at_top_k( # labels=groundtruth_classes, # predictions=predicted_classes, # k = 5) # top_10 = tf.metrics.precision_at_top_k( # labels=groundtruth_classes, # predictions=predicted_classes, # k = 10) eval_metric_ops = { 'eval/accuracy': tf.metrics.accuracy( labels=groundtruth_classes, predictions=predicted_classes), # 'eval/accuracy_top5': top_5, # 'eval/accuracy_top10': top_10, } return tf.estimator.EstimatorSpec( mode, loss=loss, eval_metric_ops=eval_metric_ops)
def train(train_record_file, train_log_step, train_param, val_record_file, val_log_step, labels_nums, data_shape, snapshot, snapshot_prefix): ''' :param train_record_file: 训练的tfrecord文件 :param train_log_step: 显示训练过程log信息间隔 :param train_param: train参数 :param val_record_file: 验证的tfrecord文件 :param val_log_step: 显示验证过程log信息间隔 :param val_param: val参数 :param labels_nums: labels数 :param data_shape: 输入数据shape :param snapshot: 保存模型间隔 :param snapshot_prefix: 保存模型文件的前缀名 :return: ''' [base_lr, max_steps] = train_param [batch_size, resize_height, resize_width, depths] = data_shape # 获得训练和测试的样本数 train_nums = get_example_nums(train_record_file) val_nums = get_example_nums(val_record_file) print('train nums:%d,val nums:%d' % (train_nums, val_nums)) regularizer = slim.l2_regularizer(0.0005) # 从record中读取图片和labels数据 # train数据,训练数据一般要求打乱顺序shuffle=True train_images, train_labels = read_records(train_record_file, resize_height, resize_width, type='normalization') train_images_batch, train_labels_batch = get_batch_images( train_images, train_labels, batch_size=batch_size, labels_nums=labels_nums, one_hot=True, shuffle=True) # val数据,验证数据可以不需要打乱数据 val_images, val_labels = read_records(val_record_file, resize_height, resize_width, type='normalization') val_images_batch, val_labels_batch = get_batch_images( val_images, val_labels, batch_size=batch_size, labels_nums=labels_nums, one_hot=True, shuffle=False) # Define the model: with slim.arg_scope(resnet.resnet_arg_scope()): out, end_points = resnet.resnet_v2_50(inputs=input_images, num_classes=labels_nums, is_training=is_training) # Specify the loss function: tf.losses定义的loss函数都会自动添加到loss函数,不需要add_loss()了 tf.losses.softmax_cross_entropy(onehot_labels=input_labels, logits=out) #添加交叉熵损失loss=1.6 # slim.losses.add_loss(my_loss) loss = tf.losses.get_total_loss( add_regularization_losses=True) #添加正则化损失loss=2.2 accuracy = tf.reduce_mean( tf.cast(tf.equal(tf.argmax(out, 1), tf.argmax(input_labels, 1)), tf.float32)) score = tf.nn.softmax(out, name='score') classIds = tf.argmax(out, 1) # Specify the optimization scheme: # optimizer = tf.train.GradientDescentOptimizer(learning_rate=base_lr) # global_step = tf.Variable(0, trainable=False) # learning_rate = tf.train.exponential_decay(0.05, global_step, 150, 0.9) # optimizer = tf.train.MomentumOptimizer(learning_rate=base_lr, momentum=0.9) # # train_tensor = optimizer.minimize(loss, global_step) # train_op = slim.learning.create_train_op(loss, optimizer,global_step=global_step) # 在定义训练的时候, 注意到我们使用了`batch_norm`层时,需要更新每一层的`average`和`variance`参数, # 更新的过程不包含在正常的训练过程中, 需要我们去手动像下面这样更新 # 通过`tf.get_collection`获得所有需要更新的`op` update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # 使用`tensorflow`的控制流, 先执行更新算子, 再执行训练 with tf.control_dependencies(update_ops): # create_train_op that ensures that when we evaluate it to get the loss, # the update_ops are done and the gradient updates are computed. # train_op = slim.learning.create_train_op(total_loss=loss,optimizer=optimizer) train_op = slim.learning.create_train_op(total_loss=loss, optimizer=optimizer) # 循环迭代过程 step_train(train_op, loss, accuracy, score, classIds, train_images_batch, train_labels_batch, train_nums, train_log_step, val_images_batch, val_labels_batch, val_nums, val_log_step, snapshot_prefix, snapshot)