コード例 #1
0
 def testModelVariables(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     with self.test_session():
         inputs = random_ops.random_uniform((batch_size, height, width, 3))
         vgg.vgg_19(inputs, num_classes)
         expected_names = [
             'vgg_19/conv1/conv1_1/weights',
             'vgg_19/conv1/conv1_1/biases',
             'vgg_19/conv1/conv1_2/weights',
             'vgg_19/conv1/conv1_2/biases',
             'vgg_19/conv2/conv2_1/weights',
             'vgg_19/conv2/conv2_1/biases',
             'vgg_19/conv2/conv2_2/weights',
             'vgg_19/conv2/conv2_2/biases',
             'vgg_19/conv3/conv3_1/weights',
             'vgg_19/conv3/conv3_1/biases',
             'vgg_19/conv3/conv3_2/weights',
             'vgg_19/conv3/conv3_2/biases',
             'vgg_19/conv3/conv3_3/weights',
             'vgg_19/conv3/conv3_3/biases',
             'vgg_19/conv3/conv3_4/weights',
             'vgg_19/conv3/conv3_4/biases',
             'vgg_19/conv4/conv4_1/weights',
             'vgg_19/conv4/conv4_1/biases',
             'vgg_19/conv4/conv4_2/weights',
             'vgg_19/conv4/conv4_2/biases',
             'vgg_19/conv4/conv4_3/weights',
             'vgg_19/conv4/conv4_3/biases',
             'vgg_19/conv4/conv4_4/weights',
             'vgg_19/conv4/conv4_4/biases',
             'vgg_19/conv5/conv5_1/weights',
             'vgg_19/conv5/conv5_1/biases',
             'vgg_19/conv5/conv5_2/weights',
             'vgg_19/conv5/conv5_2/biases',
             'vgg_19/conv5/conv5_3/weights',
             'vgg_19/conv5/conv5_3/biases',
             'vgg_19/conv5/conv5_4/weights',
             'vgg_19/conv5/conv5_4/biases',
             'vgg_19/fc6/weights',
             'vgg_19/fc6/biases',
             'vgg_19/fc7/weights',
             'vgg_19/fc7/biases',
             'vgg_19/fc8/weights',
             'vgg_19/fc8/biases',
         ]
         model_variables = [
             v.op.name for v in variables_lib.get_model_variables()
         ]
         self.assertSetEqual(set(model_variables), set(expected_names))
コード例 #2
0
 def testEndPoints(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     for is_training in [True, False]:
         with ops.Graph().as_default():
             inputs = random_ops.random_uniform(
                 (batch_size, height, width, 3))
             _, end_points = vgg.vgg_19(inputs,
                                        num_classes,
                                        is_training=is_training)
             expected_names = [
                 'vgg_19/conv1/conv1_1', 'vgg_19/conv1/conv1_2',
                 'vgg_19/pool1', 'vgg_19/conv2/conv2_1',
                 'vgg_19/conv2/conv2_2', 'vgg_19/pool2',
                 'vgg_19/conv3/conv3_1', 'vgg_19/conv3/conv3_2',
                 'vgg_19/conv3/conv3_3', 'vgg_19/conv3/conv3_4',
                 'vgg_19/pool3', 'vgg_19/conv4/conv4_1',
                 'vgg_19/conv4/conv4_2', 'vgg_19/conv4/conv4_3',
                 'vgg_19/conv4/conv4_4', 'vgg_19/pool4',
                 'vgg_19/conv5/conv5_1', 'vgg_19/conv5/conv5_2',
                 'vgg_19/conv5/conv5_3', 'vgg_19/conv5/conv5_4',
                 'vgg_19/pool5', 'vgg_19/fc6', 'vgg_19/fc7', 'vgg_19/fc8'
             ]
             self.assertSetEqual(set(end_points.keys()),
                                 set(expected_names))
コード例 #3
0
 def testForward(self):
     batch_size = 1
     height, width = 224, 224
     with self.test_session() as sess:
         inputs = random_ops.random_uniform((batch_size, height, width, 3))
         logits, _ = vgg.vgg_19(inputs)
         sess.run(variables.global_variables_initializer())
         output = sess.run(logits)
         self.assertTrue(output.any())
コード例 #4
0
 def testFullyConvolutional(self):
     batch_size = 1
     height, width = 256, 256
     num_classes = 1000
     with self.test_session():
         inputs = random_ops.random_uniform((batch_size, height, width, 3))
         logits, _ = vgg.vgg_19(inputs, num_classes, spatial_squeeze=False)
         self.assertEquals(logits.op.name, 'vgg_19/fc8/BiasAdd')
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, 2, 2, num_classes])
コード例 #5
0
 def testBuild(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     with self.test_session():
         inputs = random_ops.random_uniform((batch_size, height, width, 3))
         logits, _ = vgg.vgg_19(inputs, num_classes)
         self.assertEquals(logits.op.name, 'vgg_19/fc8/squeezed')
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, num_classes])
コード例 #6
0
ファイル: vgg_test.py プロジェクト: cheesenonion89/cnn_server
 def testEvaluation(self):
     batch_size = 2
     height, width = 224, 224
     num_classes = 1000
     with self.test_session():
         eval_inputs = tf.random_uniform((batch_size, height, width, 3))
         logits, _ = vgg.vgg_19(eval_inputs, is_training=False)
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, num_classes])
         predictions = tf.argmax(logits, 1)
         self.assertListEqual(predictions.get_shape().as_list(),
                              [batch_size])
コード例 #7
0
 def testTrainEvalWithReuse(self):
     train_batch_size = 2
     eval_batch_size = 1
     train_height, train_width = 224, 224
     eval_height, eval_width = 256, 256
     num_classes = 1000
     with self.test_session():
         train_inputs = random_ops.random_uniform(
             (train_batch_size, train_height, train_width, 3))
         logits, _ = vgg.vgg_19(train_inputs)
         self.assertListEqual(logits.get_shape().as_list(),
                              [train_batch_size, num_classes])
         variable_scope.get_variable_scope().reuse_variables()
         eval_inputs = random_ops.random_uniform(
             (eval_batch_size, eval_height, eval_width, 3))
         logits, _ = vgg.vgg_19(eval_inputs,
                                is_training=False,
                                spatial_squeeze=False)
         self.assertListEqual(logits.get_shape().as_list(),
                              [eval_batch_size, 2, 2, num_classes])
         logits = math_ops.reduce_mean(logits, [1, 2])
         predictions = math_ops.argmax(logits, 1)
         self.assertEquals(predictions.get_shape().as_list(),
                           [eval_batch_size])
コード例 #8
0
ファイル: vgg_test.py プロジェクト: cheesenonion89/cnn_server
 def testEndPoints(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     with self.test_session():
         inputs = tf.random_uniform((batch_size, height, width, 3))
         _, end_points = vgg.vgg_19(inputs, num_classes)
         expected_names = [
             'vgg_19/conv1/conv1_1', 'vgg_19/conv1/conv1_2', 'vgg_19/pool1',
             'vgg_19/conv2/conv2_1', 'vgg_19/conv2/conv2_2', 'vgg_19/pool2',
             'vgg_19/conv3/conv3_1', 'vgg_19/conv3/conv3_2',
             'vgg_19/conv3/conv3_3', 'vgg_19/conv3/conv3_4', 'vgg_19/pool3',
             'vgg_19/conv4/conv4_1', 'vgg_19/conv4/conv4_2',
             'vgg_19/conv4/conv4_3', 'vgg_19/conv4/conv4_4', 'vgg_19/pool4',
             'vgg_19/conv5/conv5_1', 'vgg_19/conv5/conv5_2',
             'vgg_19/conv5/conv5_3', 'vgg_19/conv5/conv5_4', 'vgg_19/pool5',
             'vgg_19/fc6', 'vgg_19/fc7', 'vgg_19/fc8'
         ]
         self.assertSetEqual(set(end_points.keys()), set(expected_names))
コード例 #9
0
ファイル: export_pbtxt.py プロジェクト: longnguyen2706/FYP
import tensorflow as tf
import tensorflow.contrib.slim as slim

from slim.nets.vgg import vgg_19, vgg_arg_scope
from slim.nets.inception_resnet_v2 import inception_resnet_v2, inception_resnet_v2_arg_scope
from slim.nets.resnet_v2 import resnet_v2_152, resnet_v2, resnet_arg_scope
import numpy as np

height = 224
width = 224
channels = 3

image_size = vgg_19.default_image_size
X = tf.placeholder(tf.float32, shape=[None, image_size, image_size, channels])
with slim.arg_scope(vgg_arg_scope()):
    logits, end_points = vgg_19(X, num_classes=1000, is_training=False)
    print(end_points)
    # print(end_points.shape, end_points.type)
predictions = end_points['vgg_19/fc8']

saver = tf.train.Saver()

X_test = np.ones((1, image_size, image_size, channels))  # a fake image

# Execute the graph
with tf.Session() as sess:
    saver.restore(sess, '/home/duclong002/pretrained_model/vgg19/vgg_19.ckpt')
    predictions_val = predictions.eval(feed_dict={X: X_test})
    tf.train.write_graph(sess.graph_def,
                         '/home/duclong002/pretrained_model/vgg19/',
                         'vgg19.pbtxt', True)
コード例 #10
0
ファイル: train_vgg19.py プロジェクト: longnguyen2706/FYP
import numpy as np
import tensorflow as tf
from tensorflow.contrib import slim
from slim.nets import vgg
import os

checkpoints_dir = '/home/long/pretrained_model/vgg19/'
summaries_dir = '/home/long/pretrained_model/summaries/vgg19'
image_size = vgg.vgg_19.default_image_size

with tf.Graph().as_default():
    X = tf.placeholder(tf.float32, shape=[None, image_size, image_size, 3])
    image = np.ones((1, image_size, image_size, 3), dtype=np.float32)
    logits, _ = vgg.vgg_19(image, 1000, is_training=False)

    init_fn = slim.assign_from_checkpoint_fn(
        os.path.join(checkpoints_dir, 'vgg_19.ckpt'),
        slim.get_model_variables('vgg_19'))

    probabilities = tf.nn.softmax(logits)
    with tf.Session() as sess:
        init_fn(sess)
        np_image, probabilities = sess.run([X, probabilities],
                                           feed_dict={X: image})
        # with tf.name_scope('summaries'):
        #     tf.summary.scalar(probabilities)
        # probabilities = probabilities[0, 0:]
        # sorted_inds = [i[0] for i in sorted(enumerate(-probabilities), key=lambda x: x[1])]

    # names = imagenet.create_readable_names_for_imagenet_labels()
    # for i in range(5):