コード例 #1
0
def test_raises_uequal_shapes_circ():
    with slippy.OverRideCuda():
        im = e_im('zz', (128, 128), (0.01, 0.01), 200e9, 0.3)
        load_shapes = [(128, 129), (128, 129), (129, 128), (129, 128)]
        circulars = [True, (False, True), True, (True, False)]
        for l_s, circ in zip(load_shapes, circulars):
            with npt.assert_raises(AssertionError):
                loads = np.zeros(l_s)
                _ = c.plan_convolve(loads, im, circular=circ)
コード例 #2
0
def test_non_circ_convolve_vs_scipy():
    with slippy.OverRideCuda():
        for im_s, l_s in zip(im_shapes, loads_shapes):
            # generate an influence matrix, pick a component which is not symmetric!
            im = e_im('zx', im_s, (0.01, 0.01), 200e9, 0.3)
            loads = 1000 * np.random.rand(*l_s)
            scipy_result = fftconvolve(loads, im, mode='same')
            conv_func = c.plan_convolve(loads, im)
            slippy_result = conv_func(loads)
            err_msg = f'Non circular convolution did not match scipy output for loads shape: {l_s} and IM shape: {im_s}'
            npt.assert_allclose(slippy_result, scipy_result, err_msg=err_msg)
コード例 #3
0
def test_raises_uequal_shapes_circ():
    try:
        import cupy  # noqa: F401
        slippy.CUDA = True
    except ImportError:
        return
    im = e_im('zz', (128, 128), (0.01, 0.01), 200e9, 0.3)
    load_shapes = [(128, 129), (128, 129), (129, 128), (129, 128)]
    circulars = [True, (False, True), True, (True, False)]
    for l_s, circ in zip(load_shapes, circulars):
        with npt.assert_raises(AssertionError):
            loads = np.zeros(l_s)
            _ = c.plan_convolve(loads, im, circular=circ)
コード例 #4
0
def test_dont_raise_equal_shapes_circ():
    with slippy.OverRideCuda():
        im = e_im('zz', (128, 128), (0.01, 0.01), 200e9, 0.3)
        load_shapes = [(128, 128), (128, 129), (129, 128), (129, 128)]
        circulars = [True, (True, False), False, (False, True)]
        for l_s, circ in zip(load_shapes, circulars):
            loads = np.zeros(l_s)
            try:
                _ = c.plan_convolve(loads, im, circular=circ)
            except:  # noqa: E722
                raise AssertionError(
                    f"Plan convolve raised wrong error for mixed "
                    f"convolution load shape: {l_s}, circ: {circ}")
コード例 #5
0
def test_non_circ_convolve_vs_scipy():
    try:
        import cupy as cp
        slippy.CUDA = True
    except ImportError:
        return
    for im_s, l_s in zip(im_shapes, loads_shapes):
        # generate an influence matrix, pick a component which is not symmetric!
        im = e_im('zx', im_s, (0.01, 0.01), 200e9, 0.3)
        loads = 1000*np.random.rand(*l_s)
        scipy_result = fftconvolve(loads, im, mode='same')
        conv_func = c.plan_convolve(loads, im)
        slippy_result = cp.asnumpy(conv_func(loads))
        err_msg = f'Non circular convolution did not match scipy output for loads shape: {l_s} and IM shape: {im_s}'
        npt.assert_allclose(slippy_result, scipy_result, err_msg=err_msg)
コード例 #6
0
def test_mixed_convolve():
    with slippy.OverRideCuda():
        for circ in [[True, False], [False, True]]:
            im = e_im('zz', (128, 128), (0.01, 0.01), 200e9, 0.3)
            loads = np.zeros([128, 128])
            loads[64, 64] = 1000
            conv_func = c.plan_convolve(loads, im, circular=circ)
            slippy_result = conv_func(loads)
            loc_load = np.argmax(loads)
            loc_result = np.argmax(slippy_result)
            err_msg = f'Mixed circular convolution, location of load dosn\'t match displacement' \
                      f'for circular: {circ} \n ' \
                      f'expected: {np.unravel_index(loc_load, loads.shape)}, ' \
                      f'found: {np.unravel_index(loc_result, loads.shape)}'
            assert loc_load == loc_result, err_msg
コード例 #7
0
def test_non_circ_convolve_location():
    with slippy.OverRideCuda():
        for im_s, l_s in zip(im_shapes, loads_shapes):
            # generate an influence matrix, pick a component which is not symmetric!
            im = e_im('zz', im_s, (0.01, 0.01), 200e9, 0.3)
            loads = np.zeros(l_s)
            loads[64, 64] = 1000
            conv_func = c.plan_convolve(loads, im)
            slippy_result = conv_func(loads)
            loc_load = np.argmax(loads)
            loc_result = np.argmax(slippy_result)
            err_msg = f'Non circular convolution, location of load dosn\'t match displacement' \
                      f'for loads shape: {l_s} and IM shape: {im_s} \n ' \
                      f'expected: {np.unravel_index(loc_load,l_s)}, found: {np.unravel_index(loc_result,l_s)}'
            assert loc_load == loc_result, err_msg
コード例 #8
0
def test_mixed_convolve():
    try:
        import cupy as cp
        slippy.CUDA = True
    except ImportError:
        return
    for circ in [[True, False], [False, True]]:
        im = e_im('zz', (128, 128), (0.01, 0.01), 200e9, 0.3)
        loads = np.zeros([128, 128])
        loads[64, 64] = 1000
        conv_func = c.plan_convolve(loads, im, circular=circ)
        slippy_result = cp.asnumpy(conv_func(loads))
        loc_load = np.argmax(loads)
        loc_result = np.argmax(slippy_result)
        err_msg = f'Mixed circular convolution, location of load dosn\'t match displacement' \
                  f'for circular: {circ} \n ' \
                  f'expected: {np.unravel_index(loc_load, loads.shape)}, ' \
                  f'found: {np.unravel_index(loc_result, loads.shape)}'
        assert loc_load == loc_result, err_msg
コード例 #9
0
def test_circ_convolve_location():
    try:
        import cupy as cp
        slippy.CUDA = True
    except ImportError:
        return
    for im_s, l_s in zip(shapes_circ, shapes_circ):
        # generate an influence matrix, pick a component which is not symmetric!
        im = e_im('zz', im_s, (0.01, 0.01), 200e9, 0.3)
        loads = np.zeros(l_s)
        loads[64, 64] = 1000
        conv_func = c.plan_convolve(loads, im, circular=True)
        slippy_result = cp.asnumpy(conv_func(loads))
        loc_load = np.argmax(loads)
        loc_result = np.argmax(slippy_result)
        err_msg = f'Circular convolution, location of load dosn\'t match displacement' \
                  f'for loads shape: {l_s} and IM shape: {im_s} \n ' \
                  f'expected: {np.unravel_index(loc_load,l_s)}, found: {np.unravel_index(loc_result,l_s)}'
        assert loc_load == loc_result, err_msg