def parse_call(expression, caller_context): src = expression['src'] if caller_context.is_compact_ast: attributes = expression type_conversion = expression['kind'] == 'typeConversion' type_return = attributes['typeDescriptions']['typeString'] else: attributes = expression['attributes'] type_conversion = attributes['type_conversion'] type_return = attributes['type'] if type_conversion: type_call = parse_type(UnknownType(type_return), caller_context) if caller_context.is_compact_ast: type_info = expression['expression'] assert len(expression['arguments']) == 1 expression_to_parse = expression['arguments'][0] else: children = expression['children'] assert len(children) == 2 type_info = children[0] expression_to_parse = children[1] assert type_info['name'] in [ 'ElementaryTypenameExpression', 'ElementaryTypeNameExpression', 'Identifier', 'TupleExpression', 'IndexAccess', 'MemberAccess' ] expression = parse_expression(expression_to_parse, caller_context) t = TypeConversion(expression, type_call) t.set_offset(src, caller_context.slither) return t if caller_context.is_compact_ast: called = parse_expression(expression['expression'], caller_context) arguments = [] if expression['arguments']: arguments = [ parse_expression(a, caller_context) for a in expression['arguments'] ] else: children = expression['children'] called = parse_expression(children[0], caller_context) arguments = [ parse_expression(a, caller_context) for a in children[1::] ] if isinstance(called, SuperCallExpression): sp = SuperCallExpression(called, arguments, type_return) sp.set_offset(expression['src'], caller_context.slither) return sp call_expression = CallExpression(called, arguments, type_return) call_expression.set_offset(src, caller_context.slither) return call_expression
def parse_expression(expression, caller_context): """ Returns: str: expression """ # Expression # = Expression ('++' | '--') # | NewExpression # | IndexAccess # | MemberAccess # | FunctionCall # | '(' Expression ')' # | ('!' | '~' | 'delete' | '++' | '--' | '+' | '-') Expression # | Expression '**' Expression # | Expression ('*' | '/' | '%') Expression # | Expression ('+' | '-') Expression # | Expression ('<<' | '>>') Expression # | Expression '&' Expression # | Expression '^' Expression # | Expression '|' Expression # | Expression ('<' | '>' | '<=' | '>=') Expression # | Expression ('==' | '!=') Expression # | Expression '&&' Expression # | Expression '||' Expression # | Expression '?' Expression ':' Expression # | Expression ('=' | '|=' | '^=' | '&=' | '<<=' | '>>=' | '+=' | '-=' | '*=' | '/=' | '%=') Expression # | PrimaryExpression # The AST naming does not follow the spec name = expression[caller_context.get_key()] is_compact_ast = caller_context.is_compact_ast src = expression['src'] if name == 'UnaryOperation': if is_compact_ast: attributes = expression else: attributes = expression['attributes'] assert 'prefix' in attributes operation_type = UnaryOperationType.get_type(attributes['operator'], attributes['prefix']) if is_compact_ast: expression = parse_expression(expression['subExpression'], caller_context) else: assert len(expression['children']) == 1 expression = parse_expression(expression['children'][0], caller_context) unary_op = UnaryOperation(expression, operation_type) unary_op.set_offset(src, caller_context.slither) return unary_op elif name == 'BinaryOperation': if is_compact_ast: attributes = expression else: attributes = expression['attributes'] operation_type = BinaryOperationType.get_type(attributes['operator']) if is_compact_ast: left_expression = parse_expression(expression['leftExpression'], caller_context) right_expression = parse_expression(expression['rightExpression'], caller_context) else: assert len(expression['children']) == 2 left_expression = parse_expression(expression['children'][0], caller_context) right_expression = parse_expression(expression['children'][1], caller_context) binary_op = BinaryOperation(left_expression, right_expression, operation_type) binary_op.set_offset(src, caller_context.slither) return binary_op elif name in 'FunctionCall': return parse_call(expression, caller_context) elif name == 'FunctionCallOptions': # call/gas info are handled in parse_call called = parse_expression(expression['expression'], caller_context) assert isinstance(called, (MemberAccess, NewContract)) return called elif name == 'TupleExpression': """ For expression like (a,,c) = (1,2,3) the AST provides only two children in the left side We check the type provided (tuple(uint256,,uint256)) To determine that there is an empty variable Otherwhise we would not be able to determine that a = 1, c = 3, and 2 is lost Note: this is only possible with Solidity >= 0.4.12 """ if is_compact_ast: expressions = [ parse_expression(e, caller_context) if e else None for e in expression['components'] ] else: if 'children' not in expression: attributes = expression['attributes'] components = attributes['components'] expressions = [ parse_expression(c, caller_context) if c else None for c in components ] else: expressions = [ parse_expression(e, caller_context) for e in expression['children'] ] # Add none for empty tuple items if "attributes" in expression: if "type" in expression['attributes']: t = expression['attributes']['type'] if ',,' in t or '(,' in t or ',)' in t: t = t[len('tuple('):-1] elems = t.split(',') for idx in range(len(elems)): if elems[idx] == '': expressions.insert(idx, None) t = TupleExpression(expressions) t.set_offset(src, caller_context.slither) return t elif name == 'Conditional': if is_compact_ast: if_expression = parse_expression(expression['condition'], caller_context) then_expression = parse_expression(expression['trueExpression'], caller_context) else_expression = parse_expression(expression['falseExpression'], caller_context) else: children = expression['children'] assert len(children) == 3 if_expression = parse_expression(children[0], caller_context) then_expression = parse_expression(children[1], caller_context) else_expression = parse_expression(children[2], caller_context) conditional = ConditionalExpression(if_expression, then_expression, else_expression) conditional.set_offset(src, caller_context.slither) return conditional elif name == 'Assignment': if is_compact_ast: left_expression = parse_expression(expression['leftHandSide'], caller_context) right_expression = parse_expression(expression['rightHandSide'], caller_context) operation_type = AssignmentOperationType.get_type( expression['operator']) operation_return_type = expression['typeDescriptions'][ 'typeString'] else: attributes = expression['attributes'] children = expression['children'] assert len(expression['children']) == 2 left_expression = parse_expression(children[0], caller_context) right_expression = parse_expression(children[1], caller_context) operation_type = AssignmentOperationType.get_type( attributes['operator']) operation_return_type = attributes['type'] assignement = AssignmentOperation(left_expression, right_expression, operation_type, operation_return_type) assignement.set_offset(src, caller_context.slither) return assignement elif name == 'Literal': subdenomination = None assert 'children' not in expression if is_compact_ast: value = expression['value'] if value: if 'subdenomination' in expression and expression[ 'subdenomination']: subdenomination = expression['subdenomination'] elif not value and value != "": value = '0x' + expression['hexValue'] type = expression['typeDescriptions']['typeString'] # Length declaration for array was None until solc 0.5.5 if type is None: if expression['kind'] == 'number': type = 'int_const' else: value = expression['attributes']['value'] if value: if 'subdenomination' in expression['attributes'] and expression[ 'attributes']['subdenomination']: subdenomination = expression['attributes'][ 'subdenomination'] elif value is None: # for literal declared as hex # see https://solidity.readthedocs.io/en/v0.4.25/types.html?highlight=hex#hexadecimal-literals assert 'hexvalue' in expression['attributes'] value = '0x' + expression['attributes']['hexvalue'] type = expression['attributes']['type'] if type is None: if value.isdecimal(): type = ElementaryType('uint256') else: type = ElementaryType('string') elif type.startswith('int_const '): type = ElementaryType('uint256') elif type.startswith('bool'): type = ElementaryType('bool') elif type.startswith('address'): type = ElementaryType('address') else: type = ElementaryType('string') literal = Literal(value, type, subdenomination) literal.set_offset(src, caller_context.slither) return literal elif name == 'Identifier': assert 'children' not in expression t = None if caller_context.is_compact_ast: value = expression['name'] t = expression['typeDescriptions']['typeString'] else: value = expression['attributes']['value'] if 'type' in expression['attributes']: t = expression['attributes']['type'] if t: found = re.findall( '[struct|enum|function|modifier] \(([\[\] ()a-zA-Z0-9\.,_]*)\)', t) assert len(found) <= 1 if found: value = value + '(' + found[0] + ')' value = filter_name(value) if 'referencedDeclaration' in expression: referenced_declaration = expression['referencedDeclaration'] else: referenced_declaration = None var = find_variable(value, caller_context, referenced_declaration) identifier = Identifier(var) identifier.set_offset(src, caller_context.slither) return identifier elif name == 'IndexAccess': if is_compact_ast: index_type = expression['typeDescriptions']['typeString'] left = expression['baseExpression'] right = expression['indexExpression'] else: index_type = expression['attributes']['type'] children = expression['children'] assert len(children) == 2 left = children[0] right = children[1] # IndexAccess is used to describe ElementaryTypeNameExpression # if abi.decode is used # For example, abi.decode(data, ...(uint[]) ) if right is None: return parse_expression(left, caller_context) left_expression = parse_expression(left, caller_context) right_expression = parse_expression(right, caller_context) index = IndexAccess(left_expression, right_expression, index_type) index.set_offset(src, caller_context.slither) return index elif name == 'MemberAccess': if caller_context.is_compact_ast: member_name = expression['memberName'] member_type = expression['typeDescriptions']['typeString'] member_expression = parse_expression(expression['expression'], caller_context) else: member_name = expression['attributes']['member_name'] member_type = expression['attributes']['type'] children = expression['children'] assert len(children) == 1 member_expression = parse_expression(children[0], caller_context) if str(member_expression) == 'super': super_name = parse_super_name(expression, is_compact_ast) var = find_variable(super_name, caller_context, is_super=True) if var is None: raise VariableNotFound( 'Variable not found: {}'.format(super_name)) sup = SuperIdentifier(var) sup.set_offset(src, caller_context.slither) return sup member_access = MemberAccess(member_name, member_type, member_expression) member_access.set_offset(src, caller_context.slither) if str(member_access) in SOLIDITY_VARIABLES_COMPOSED: idx = Identifier(SolidityVariableComposed(str(member_access))) idx.set_offset(src, caller_context.slither) return idx return member_access elif name == 'ElementaryTypeNameExpression': return _parse_elementary_type_name_expression(expression, is_compact_ast, caller_context) # NewExpression is not a root expression, it's always the child of another expression elif name == 'NewExpression': if is_compact_ast: type_name = expression['typeName'] else: children = expression['children'] assert len(children) == 1 type_name = children[0] if type_name[caller_context.get_key()] == 'ArrayTypeName': depth = 0 while type_name[caller_context.get_key()] == 'ArrayTypeName': # Note: dont conserve the size of the array if provided # We compute it directly if is_compact_ast: type_name = type_name['baseType'] else: type_name = type_name['children'][0] depth += 1 if type_name[caller_context.get_key()] == 'ElementaryTypeName': if is_compact_ast: array_type = ElementaryType(type_name['name']) else: array_type = ElementaryType( type_name['attributes']['name']) elif type_name[caller_context.get_key()] == 'UserDefinedTypeName': if is_compact_ast: array_type = parse_type(UnknownType(type_name['name']), caller_context) else: array_type = parse_type( UnknownType(type_name['attributes']['name']), caller_context) elif type_name[caller_context.get_key()] == 'FunctionTypeName': array_type = parse_type(type_name, caller_context) else: raise ParsingError('Incorrect type array {}'.format(type_name)) array = NewArray(depth, array_type) array.set_offset(src, caller_context.slither) return array if type_name[caller_context.get_key()] == 'ElementaryTypeName': if is_compact_ast: elem_type = ElementaryType(type_name['name']) else: elem_type = ElementaryType(type_name['attributes']['name']) new_elem = NewElementaryType(elem_type) new_elem.set_offset(src, caller_context.slither) return new_elem assert type_name[caller_context.get_key()] == 'UserDefinedTypeName' if is_compact_ast: contract_name = type_name['name'] else: contract_name = type_name['attributes']['name'] new = NewContract(contract_name) new.set_offset(src, caller_context.slither) return new elif name == 'ModifierInvocation': if is_compact_ast: called = parse_expression(expression['modifierName'], caller_context) arguments = [] if expression['arguments']: arguments = [ parse_expression(a, caller_context) for a in expression['arguments'] ] else: children = expression['children'] called = parse_expression(children[0], caller_context) arguments = [ parse_expression(a, caller_context) for a in children[1::] ] call = CallExpression(called, arguments, 'Modifier') call.set_offset(src, caller_context.slither) return call raise ParsingError('Expression not parsed %s' % name)
def parse_call(expression, caller_context): src = expression['src'] if caller_context.is_compact_ast: attributes = expression type_conversion = expression['kind'] == 'typeConversion' type_return = attributes['typeDescriptions']['typeString'] else: attributes = expression['attributes'] type_conversion = attributes['type_conversion'] type_return = attributes['type'] if type_conversion: type_call = parse_type(UnknownType(type_return), caller_context) if caller_context.is_compact_ast: assert len(expression['arguments']) == 1 expression_to_parse = expression['arguments'][0] else: children = expression['children'] assert len(children) == 2 type_info = children[0] expression_to_parse = children[1] assert type_info['name'] in [ 'ElementaryTypenameExpression', 'ElementaryTypeNameExpression', 'Identifier', 'TupleExpression', 'IndexAccess', 'MemberAccess' ] expression = parse_expression(expression_to_parse, caller_context) t = TypeConversion(expression, type_call) t.set_offset(src, caller_context.slither) return t call_gas = None call_value = None call_salt = None if caller_context.is_compact_ast: called = parse_expression(expression['expression'], caller_context) # If the next expression is a FunctionCallOptions # We can here the gas/value information # This is only available if the syntax is {gas: , value: } # For the .gas().value(), the member are considered as function call # And converted later to the correct info (convert.py) if expression['expression'][ caller_context.get_key()] == 'FunctionCallOptions': call_with_options = expression['expression'] for idx, name in enumerate(call_with_options.get('names', [])): option = parse_expression(call_with_options['options'][idx], caller_context) if name == 'value': call_value = option if name == 'gas': call_gas = option if name == 'salt': call_salt = option arguments = [] if expression['arguments']: arguments = [ parse_expression(a, caller_context) for a in expression['arguments'] ] else: children = expression['children'] called = parse_expression(children[0], caller_context) arguments = [ parse_expression(a, caller_context) for a in children[1::] ] if isinstance(called, SuperCallExpression): sp = SuperCallExpression(called, arguments, type_return) sp.set_offset(expression['src'], caller_context.slither) return sp call_expression = CallExpression(called, arguments, type_return) call_expression.set_offset(src, caller_context.slither) # Only available if the syntax {gas:, value:} was used call_expression.call_gas = call_gas call_expression.call_value = call_value call_expression.call_salt = call_salt return call_expression
def parse_expression(expression: Dict, caller_context: CallerContext) -> "Expression": # pylint: disable=too-many-nested-blocks,too-many-statements """ Returns: str: expression """ # Expression # = Expression ('++' | '--') # | NewExpression # | IndexAccess # | MemberAccess # | FunctionCall # | '(' Expression ')' # | ('!' | '~' | 'delete' | '++' | '--' | '+' | '-') Expression # | Expression '**' Expression # | Expression ('*' | '/' | '%') Expression # | Expression ('+' | '-') Expression # | Expression ('<<' | '>>') Expression # | Expression '&' Expression # | Expression '^' Expression # | Expression '|' Expression # | Expression ('<' | '>' | '<=' | '>=') Expression # | Expression ('==' | '!=') Expression # | Expression '&&' Expression # | Expression '||' Expression # | Expression '?' Expression ':' Expression # | Expression ('=' | '|=' | '^=' | '&=' | '<<=' | '>>=' | '+=' | '-=' | '*=' | '/=' | '%=') Expression # | PrimaryExpression # The AST naming does not follow the spec name = expression[caller_context.get_key()] is_compact_ast = caller_context.is_compact_ast src = expression["src"] if name == "UnaryOperation": if is_compact_ast: attributes = expression else: attributes = expression["attributes"] assert "prefix" in attributes operation_type = UnaryOperationType.get_type(attributes["operator"], attributes["prefix"]) if is_compact_ast: expression = parse_expression(expression["subExpression"], caller_context) else: assert len(expression["children"]) == 1 expression = parse_expression(expression["children"][0], caller_context) unary_op = UnaryOperation(expression, operation_type) unary_op.set_offset(src, caller_context.slither) return unary_op if name == "BinaryOperation": if is_compact_ast: attributes = expression else: attributes = expression["attributes"] operation_type = BinaryOperationType.get_type(attributes["operator"]) if is_compact_ast: left_expression = parse_expression(expression["leftExpression"], caller_context) right_expression = parse_expression(expression["rightExpression"], caller_context) else: assert len(expression["children"]) == 2 left_expression = parse_expression(expression["children"][0], caller_context) right_expression = parse_expression(expression["children"][1], caller_context) binary_op = BinaryOperation(left_expression, right_expression, operation_type) binary_op.set_offset(src, caller_context.slither) return binary_op if name in "FunctionCall": return parse_call(expression, caller_context) if name == "FunctionCallOptions": # call/gas info are handled in parse_call if is_compact_ast: called = parse_expression(expression["expression"], caller_context) else: called = parse_expression(expression["children"][0], caller_context) assert isinstance(called, (MemberAccess, NewContract, Identifier, TupleExpression)) return called if name == "TupleExpression": # For expression like # (a,,c) = (1,2,3) # the AST provides only two children in the left side # We check the type provided (tuple(uint256,,uint256)) # To determine that there is an empty variable # Otherwhise we would not be able to determine that # a = 1, c = 3, and 2 is lost # # Note: this is only possible with Solidity >= 0.4.12 if is_compact_ast: expressions = [ parse_expression(e, caller_context) if e else None for e in expression["components"] ] else: if "children" not in expression: attributes = expression["attributes"] components = attributes["components"] expressions = [ parse_expression(c, caller_context) if c else None for c in components ] else: expressions = [parse_expression(e, caller_context) for e in expression["children"]] # Add none for empty tuple items if "attributes" in expression: if "type" in expression["attributes"]: t = expression["attributes"]["type"] if ",," in t or "(," in t or ",)" in t: t = t[len("tuple(") : -1] elems = t.split(",") for idx, _ in enumerate(elems): if elems[idx] == "": expressions.insert(idx, None) t = TupleExpression(expressions) t.set_offset(src, caller_context.slither) return t if name == "Conditional": if is_compact_ast: if_expression = parse_expression(expression["condition"], caller_context) then_expression = parse_expression(expression["trueExpression"], caller_context) else_expression = parse_expression(expression["falseExpression"], caller_context) else: children = expression["children"] assert len(children) == 3 if_expression = parse_expression(children[0], caller_context) then_expression = parse_expression(children[1], caller_context) else_expression = parse_expression(children[2], caller_context) conditional = ConditionalExpression(if_expression, then_expression, else_expression) conditional.set_offset(src, caller_context.slither) return conditional if name == "Assignment": if is_compact_ast: left_expression = parse_expression(expression["leftHandSide"], caller_context) right_expression = parse_expression(expression["rightHandSide"], caller_context) operation_type = AssignmentOperationType.get_type(expression["operator"]) operation_return_type = expression["typeDescriptions"]["typeString"] else: attributes = expression["attributes"] children = expression["children"] assert len(expression["children"]) == 2 left_expression = parse_expression(children[0], caller_context) right_expression = parse_expression(children[1], caller_context) operation_type = AssignmentOperationType.get_type(attributes["operator"]) operation_return_type = attributes["type"] assignement = AssignmentOperation( left_expression, right_expression, operation_type, operation_return_type ) assignement.set_offset(src, caller_context.slither) return assignement if name == "Literal": subdenomination = None assert "children" not in expression if is_compact_ast: value = expression["value"] if value: if "subdenomination" in expression and expression["subdenomination"]: subdenomination = expression["subdenomination"] elif not value and value != "": value = "0x" + expression["hexValue"] type_candidate = expression["typeDescriptions"]["typeString"] # Length declaration for array was None until solc 0.5.5 if type_candidate is None: if expression["kind"] == "number": type_candidate = "int_const" else: value = expression["attributes"]["value"] if value: if ( "subdenomination" in expression["attributes"] and expression["attributes"]["subdenomination"] ): subdenomination = expression["attributes"]["subdenomination"] elif value is None: # for literal declared as hex # see https://solidity.readthedocs.io/en/v0.4.25/types.html?highlight=hex#hexadecimal-literals assert "hexvalue" in expression["attributes"] value = "0x" + expression["attributes"]["hexvalue"] type_candidate = expression["attributes"]["type"] if type_candidate is None: if value.isdecimal(): type_candidate = ElementaryType("uint256") else: type_candidate = ElementaryType("string") elif type_candidate.startswith("int_const "): type_candidate = ElementaryType("uint256") elif type_candidate.startswith("bool"): type_candidate = ElementaryType("bool") elif type_candidate.startswith("address"): type_candidate = ElementaryType("address") else: type_candidate = ElementaryType("string") literal = Literal(value, type_candidate, subdenomination) literal.set_offset(src, caller_context.slither) return literal if name == "Identifier": assert "children" not in expression t = None if caller_context.is_compact_ast: value = expression["name"] t = expression["typeDescriptions"]["typeString"] else: value = expression["attributes"]["value"] if "type" in expression["attributes"]: t = expression["attributes"]["type"] if t: found = re.findall("[struct|enum|function|modifier] \(([\[\] ()a-zA-Z0-9\.,_]*)\)", t) assert len(found) <= 1 if found: value = value + "(" + found[0] + ")" value = filter_name(value) if "referencedDeclaration" in expression: referenced_declaration = expression["referencedDeclaration"] else: referenced_declaration = None var = find_variable(value, caller_context, referenced_declaration) identifier = Identifier(var) identifier.set_offset(src, caller_context.slither) return identifier if name == "IndexAccess": if is_compact_ast: index_type = expression["typeDescriptions"]["typeString"] left = expression["baseExpression"] right = expression.get("indexExpression", None) else: index_type = expression["attributes"]["type"] children = expression["children"] left = children[0] right = children[1] if len(children) > 1 else None # IndexAccess is used to describe ElementaryTypeNameExpression # if abi.decode is used # For example, abi.decode(data, ...(uint[]) ) if right is None: ret = parse_expression(left, caller_context) # Nested array are not yet available in abi.decode if isinstance(ret, ElementaryTypeNameExpression): old_type = ret.type ret.type = ArrayType(old_type, None) return ret left_expression = parse_expression(left, caller_context) right_expression = parse_expression(right, caller_context) index = IndexAccess(left_expression, right_expression, index_type) index.set_offset(src, caller_context.slither) return index if name == "MemberAccess": if caller_context.is_compact_ast: member_name = expression["memberName"] member_type = expression["typeDescriptions"]["typeString"] # member_type = parse_type( # UnknownType(expression["typeDescriptions"]["typeString"]), caller_context # ) member_expression = parse_expression(expression["expression"], caller_context) else: member_name = expression["attributes"]["member_name"] member_type = expression["attributes"]["type"] # member_type = parse_type(UnknownType(expression["attributes"]["type"]), caller_context) children = expression["children"] assert len(children) == 1 member_expression = parse_expression(children[0], caller_context) if str(member_expression) == "super": super_name = parse_super_name(expression, is_compact_ast) var = find_variable(super_name, caller_context, is_super=True) if var is None: raise VariableNotFound("Variable not found: {}".format(super_name)) sup = SuperIdentifier(var) sup.set_offset(src, caller_context.slither) return sup member_access = MemberAccess(member_name, member_type, member_expression) member_access.set_offset(src, caller_context.slither) if str(member_access) in SOLIDITY_VARIABLES_COMPOSED: id_idx = Identifier(SolidityVariableComposed(str(member_access))) id_idx.set_offset(src, caller_context.slither) return id_idx return member_access if name == "ElementaryTypeNameExpression": return _parse_elementary_type_name_expression(expression, is_compact_ast, caller_context) # NewExpression is not a root expression, it's always the child of another expression if name == "NewExpression": if is_compact_ast: type_name = expression["typeName"] else: children = expression["children"] assert len(children) == 1 type_name = children[0] if type_name[caller_context.get_key()] == "ArrayTypeName": depth = 0 while type_name[caller_context.get_key()] == "ArrayTypeName": # Note: dont conserve the size of the array if provided # We compute it directly if is_compact_ast: type_name = type_name["baseType"] else: type_name = type_name["children"][0] depth += 1 if type_name[caller_context.get_key()] == "ElementaryTypeName": if is_compact_ast: array_type = ElementaryType(type_name["name"]) else: array_type = ElementaryType(type_name["attributes"]["name"]) elif type_name[caller_context.get_key()] == "UserDefinedTypeName": if is_compact_ast: array_type = parse_type(UnknownType(type_name["name"]), caller_context) else: array_type = parse_type( UnknownType(type_name["attributes"]["name"]), caller_context ) elif type_name[caller_context.get_key()] == "FunctionTypeName": array_type = parse_type(type_name, caller_context) else: raise ParsingError("Incorrect type array {}".format(type_name)) array = NewArray(depth, array_type) array.set_offset(src, caller_context.slither) return array if type_name[caller_context.get_key()] == "ElementaryTypeName": if is_compact_ast: elem_type = ElementaryType(type_name["name"]) else: elem_type = ElementaryType(type_name["attributes"]["name"]) new_elem = NewElementaryType(elem_type) new_elem.set_offset(src, caller_context.slither) return new_elem assert type_name[caller_context.get_key()] == "UserDefinedTypeName" if is_compact_ast: # Changed introduced in Solidity 0.8 # see https://github.com/crytic/slither/issues/794 # TODO explore more the changes introduced in 0.8 and the usage of pathNode/IdentifierPath if "name" not in type_name: assert "pathNode" in type_name and "name" in type_name["pathNode"] contract_name = type_name["pathNode"]["name"] else: contract_name = type_name["name"] else: contract_name = type_name["attributes"]["name"] new = NewContract(contract_name) new.set_offset(src, caller_context.slither) return new if name == "ModifierInvocation": if is_compact_ast: called = parse_expression(expression["modifierName"], caller_context) arguments = [] if expression.get("arguments", None): arguments = [parse_expression(a, caller_context) for a in expression["arguments"]] else: children = expression["children"] called = parse_expression(children[0], caller_context) arguments = [parse_expression(a, caller_context) for a in children[1::]] call = CallExpression(called, arguments, "Modifier") call.set_offset(src, caller_context.slither) return call if name == "IndexRangeAccess": # For now, we convert array slices to a direct array access # As a result the generated IR will lose the slices information # As far as I understand, array slice are only used in abi.decode # https://solidity.readthedocs.io/en/v0.6.12/types.html # TODO: Investigate array slices usage and implication for the IR base = parse_expression(expression["baseExpression"], caller_context) return base # Introduced with solc 0.8 if name == "IdentifierPath": if caller_context.is_compact_ast: value = expression["name"] if "referencedDeclaration" in expression: referenced_declaration = expression["referencedDeclaration"] else: referenced_declaration = None var = find_variable(value, caller_context, referenced_declaration) identifier = Identifier(var) identifier.set_offset(src, caller_context.slither) return identifier raise ParsingError("IdentifierPath not currently supported for the legacy ast") raise ParsingError("Expression not parsed %s" % name)
def parse_call(expression: Dict, caller_context): # pylint: disable=too-many-statements src = expression["src"] if caller_context.is_compact_ast: attributes = expression type_conversion = expression["kind"] == "typeConversion" type_return = attributes["typeDescriptions"]["typeString"] else: attributes = expression["attributes"] type_conversion = attributes["type_conversion"] type_return = attributes["type"] if type_conversion: type_call = parse_type(UnknownType(type_return), caller_context) if caller_context.is_compact_ast: assert len(expression["arguments"]) == 1 expression_to_parse = expression["arguments"][0] else: children = expression["children"] assert len(children) == 2 type_info = children[0] expression_to_parse = children[1] assert type_info["name"] in [ "ElementaryTypenameExpression", "ElementaryTypeNameExpression", "Identifier", "TupleExpression", "IndexAccess", "MemberAccess", ] expression = parse_expression(expression_to_parse, caller_context) t = TypeConversion(expression, type_call) t.set_offset(src, caller_context.slither) return t call_gas = None call_value = None call_salt = None if caller_context.is_compact_ast: called = parse_expression(expression["expression"], caller_context) # If the next expression is a FunctionCallOptions # We can here the gas/value information # This is only available if the syntax is {gas: , value: } # For the .gas().value(), the member are considered as function call # And converted later to the correct info (convert.py) if expression["expression"][caller_context.get_key()] == "FunctionCallOptions": call_with_options = expression["expression"] for idx, name in enumerate(call_with_options.get("names", [])): option = parse_expression(call_with_options["options"][idx], caller_context) if name == "value": call_value = option if name == "gas": call_gas = option if name == "salt": call_salt = option arguments = [] if expression["arguments"]: arguments = [parse_expression(a, caller_context) for a in expression["arguments"]] else: children = expression["children"] called = parse_expression(children[0], caller_context) arguments = [parse_expression(a, caller_context) for a in children[1::]] if isinstance(called, SuperCallExpression): sp = SuperCallExpression(called, arguments, type_return) sp.set_offset(expression["src"], caller_context.slither) return sp call_expression = CallExpression(called, arguments, type_return) call_expression.set_offset(src, caller_context.slither) # Only available if the syntax {gas:, value:} was used call_expression.call_gas = call_gas call_expression.call_value = call_value call_expression.call_salt = call_salt return call_expression