コード例 #1
0
ファイル: train_net.py プロジェクト: yztongzhan/SlowFast
def eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, writer=None):
    """
    Evaluate the model on the val set.
    Args:
        val_loader (loader): data loader to provide validation data.
        model (model): model to evaluate the performance.
        val_meter (ValMeter): meter instance to record and calculate the metrics.
        cur_epoch (int): number of the current epoch of training.
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
        writer (TensorboardWriter, optional): TensorboardWriter object
            to writer Tensorboard log.
    """

    # Evaluation mode enabled. The running stats would not be updated.
    model.eval()
    val_meter.iter_tic()

    for cur_iter, (inputs, labels, _, meta) in enumerate(val_loader):
        if cfg.NUM_GPUS:
            # Transferthe data to the current GPU device.
            if isinstance(inputs, (list, )):
                for i in range(len(inputs)):
                    inputs[i] = inputs[i].cuda(non_blocking=True)
            else:
                inputs = inputs.cuda(non_blocking=True)
            labels = labels.cuda()
            for key, val in meta.items():
                if isinstance(val, (list, )):
                    for i in range(len(val)):
                        val[i] = val[i].cuda(non_blocking=True)
                else:
                    meta[key] = val.cuda(non_blocking=True)
        val_meter.data_toc()

        if cfg.DETECTION.ENABLE:
            # Compute the predictions.
            preds = model(inputs, meta["boxes"])
            ori_boxes = meta["ori_boxes"]
            metadata = meta["metadata"]

            if cfg.NUM_GPUS:
                preds = preds.cpu()
                ori_boxes = ori_boxes.cpu()
                metadata = metadata.cpu()

            if cfg.NUM_GPUS > 1:
                preds = torch.cat(du.all_gather_unaligned(preds), dim=0)
                ori_boxes = torch.cat(du.all_gather_unaligned(ori_boxes),
                                      dim=0)
                metadata = torch.cat(du.all_gather_unaligned(metadata), dim=0)

            val_meter.iter_toc()
            # Update and log stats.
            val_meter.update_stats(preds, ori_boxes, metadata)

        else:
            preds = model(inputs)

            if cfg.DATA.MULTI_LABEL:
                if cfg.NUM_GPUS > 1:
                    preds, labels = du.all_gather([preds, labels])
            else:
                # Compute the errors.
                num_topks_correct = metrics.topks_correct(
                    preds, labels, (1, 5))

                # Combine the errors across the GPUs.
                top1_err, top5_err = [(1.0 - x / preds.size(0)) * 100.0
                                      for x in num_topks_correct]
                if cfg.NUM_GPUS > 1:
                    top1_err, top5_err = du.all_reduce([top1_err, top5_err])

                # Copy the errors from GPU to CPU (sync point).
                top1_err, top5_err = top1_err.item(), top5_err.item()

                val_meter.iter_toc()
                # Update and log stats.
                val_meter.update_stats(
                    top1_err,
                    top5_err,
                    inputs[0].size(0) * max(
                        cfg.NUM_GPUS, 1
                    ),  # If running  on CPU (cfg.NUM_GPUS == 1), use 1 to represent 1 CPU.
                )
                # write to tensorboard format if available.
                if writer is not None:
                    writer.add_scalars(
                        {
                            "Val/Top1_err": top1_err,
                            "Val/Top5_err": top5_err
                        },
                        global_step=len(val_loader) * cur_epoch + cur_iter,
                    )

            val_meter.update_predictions(preds, labels)

        val_meter.log_iter_stats(cur_epoch, cur_iter)
        val_meter.iter_tic()

    # Log epoch stats.
    val_meter.log_epoch_stats(cur_epoch)
    # write to tensorboard format if available.
    if writer is not None:
        if cfg.DETECTION.ENABLE:
            writer.add_scalars({"Val/mAP": val_meter.full_map},
                               global_step=cur_epoch)
        else:
            all_preds = [pred.clone().detach() for pred in val_meter.all_preds]
            all_labels = [
                label.clone().detach() for label in val_meter.all_labels
            ]
            if cfg.NUM_GPUS:
                all_preds = [pred.cpu() for pred in all_preds]
                all_labels = [label.cpu() for label in all_labels]
            writer.plot_eval(preds=all_preds,
                             labels=all_labels,
                             global_step=cur_epoch)

    val_meter.reset()
コード例 #2
0
def train_epoch(train_loader, model, optimizer, train_meter, cur_epoch, cfg):
    """
    Perform the video training for one epoch.
    Args:
        train_loader (loader): video training loader.
        model (model): the video model to train.
        optimizer (optim): the optimizer to perform optimization on the model's
            parameters.
        train_meter (TrainMeter): training meters to log the training performance.
        cur_epoch (int): current epoch of training.
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Enable train mode.
    model.train()
    train_meter.iter_tic()
    data_size = len(train_loader)

    for cur_iter, (inputs, labels, _, meta) in enumerate(train_loader):
        # Transfer the data to the current GPU device.
        if isinstance(inputs, (list,)):
            for i in range(len(inputs)):
                inputs[i] = inputs[i].cuda(non_blocking=True)
        else:
            inputs = inputs.cuda(non_blocking=True)
        labels = labels.cuda()
        for key, val in meta.items():
            if isinstance(val, (list,)):
                for i in range(len(val)):
                    if torch.is_tensor(val[i]):
                        val[i] = val[i].cuda(non_blocking=True)
                    else:
                        val[i] = val[i].to('cuda')
            else:
                meta[key] = val.cuda(non_blocking=True)

        # Update the learning rate.
        lr = optim.get_epoch_lr(cur_epoch + float(cur_iter) / data_size, cfg)
        optim.set_lr(optimizer, lr)

        if cfg.FCOS.ENABLE:
            loss_dict = model(inputs, meta["boxes"])
            print('centerness: ', loss_dict['loss_centerness'].item(), ' class: ', loss_dict['loss_cls'].item(), ' box reg: ', loss_dict['loss_reg'].item())
            loss = sum(loss for loss in loss_dict.values())

            # # reduce losses over all GPUs for logging purposes
            # loss_dict_reduced = reduce_loss_dict(loss_dict)
            # losses_reduced = sum(loss for loss in loss_dict_reduced.values())

        else:
            if cfg.DETECTION.ENABLE:
                # Compute the predictions.
                preds = model(inputs, meta["boxes"])

            else:
                # Perform the forward pass.
                preds = model(inputs)

            # Explicitly declare reduction to mean.
            loss_fun = losses.get_loss_func(cfg.MODEL.LOSS_FUNC)(reduction="mean")

            # Compute the loss.
            loss = loss_fun(preds, labels)

        # check Nan Loss.
        misc.check_nan_losses(loss)

        # Perform the backward pass.
        optimizer.zero_grad()
        loss.backward()
        # Update the parameters.
        optimizer.step()
        if cfg.FCOS.ENABLE:
            if cfg.NUM_GPUS > 1:
                loss = du.all_reduce([loss])[0]
            loss = loss.item()
            print(f'step: {cur_iter} lr: ', lr, ' ', loss)

            # train_meter.iter_toc()
        else:
            if cfg.DETECTION.ENABLE:
                if cfg.NUM_GPUS > 1:
                    loss = du.all_reduce([loss])[0]
                loss = loss.item()

                train_meter.iter_toc()
                # Update and log stats.
                train_meter.update_stats(None, None, None, loss, lr)
            else:
                # Compute the errors.
                num_topks_correct = metrics.topks_correct(preds, labels, (1, 5))
                top1_err, top5_err = [
                    (1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct
                ]

                # Gather all the predictions across all the devices.
                if cfg.NUM_GPUS > 1:
                    loss, top1_err, top5_err = du.all_reduce(
                        [loss, top1_err, top5_err]
                    )

                # Copy the stats from GPU to CPU (sync point).
                loss, top1_err, top5_err = (
                    loss.item(),
                    top1_err.item(),
                    top5_err.item(),
                )

                train_meter.iter_toc()
                # Update and log stats.
                train_meter.update_stats(
                    top1_err, top5_err, loss, lr, inputs[0].size(0) * cfg.NUM_GPUS
                )

            train_meter.log_iter_stats(cur_epoch, cur_iter)
            train_meter.iter_tic()

            # Log epoch stats.
            train_meter.log_epoch_stats(cur_epoch)
            train_meter.reset()
コード例 #3
0
ファイル: train_net.py プロジェクト: XrosLiang/SlowFast
def train_epoch(train_loader,
                model,
                optimizer,
                train_meter,
                cur_epoch,
                cfg,
                writer=None):
    """
    Perform the video training for one epoch.
    Args:
        train_loader (loader): video training loader.
        model (model): the video model to train.
        optimizer (optim): the optimizer to perform optimization on the model's
            parameters.
        train_meter (TrainMeter): training meters to log the training performance.
        cur_epoch (int): current epoch of training.
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
        writer (TensorboardWriter, optional): TensorboardWriter object
            to writer Tensorboard log.
    """
    # Enable train mode.
    model.train()
    train_meter.iter_tic()
    data_size = len(train_loader)

    for cur_iter, (inputs, labels, _, meta) in enumerate(train_loader):
        # Transfer the data to the current GPU device.
        if isinstance(inputs, (list, )):
            for i in range(len(inputs)):
                inputs[i] = inputs[i].cuda(non_blocking=True)
        else:
            inputs = inputs.cuda(non_blocking=True)
        labels = labels.cuda()
        for key, val in meta.items():
            if isinstance(val, (list, )):
                for i in range(len(val)):
                    val[i] = val[i].cuda(non_blocking=True)
            else:
                meta[key] = val.cuda(non_blocking=True)

        # Update the learning rate.
        lr = optim.get_epoch_lr(cur_epoch + float(cur_iter) / data_size, cfg)
        optim.set_lr(optimizer, lr)

        if cfg.DETECTION.ENABLE:
            # Compute the predictions.
            preds = model(inputs, meta["boxes"])

        else:
            # Perform the forward pass.
            preds = model(inputs)
        # Explicitly declare reduction to mean.
        loss_fun = losses.get_loss_func(cfg.MODEL.LOSS_FUNC)(reduction="mean")

        # Compute the loss.
        loss = loss_fun(preds, labels)

        # check Nan Loss.
        misc.check_nan_losses(loss)

        # Perform the backward pass.
        optimizer.zero_grad()
        loss.backward()
        # Update the parameters.
        optimizer.step()

        if cfg.DETECTION.ENABLE:
            if cfg.NUM_GPUS > 1:
                loss = du.all_reduce([loss])[0]
            loss = loss.item()

            train_meter.iter_toc()
            # Update and log stats.
            train_meter.update_stats(None, None, None, loss, lr)
            # write to tensorboard format if available.
            if writer is not None:
                writer.add_scalars(
                    {
                        "Train/loss": loss,
                        "Train/lr": lr
                    },
                    global_step=data_size * cur_epoch + cur_iter,
                )

        else:
            top1_err, top5_err = None, None
            if cfg.DATA.MULTI_LABEL:
                # Gather all the predictions across all the devices.
                if cfg.NUM_GPUS > 1:
                    [loss] = du.all_reduce([loss])
                loss = loss.item()
            else:
                # Compute the errors.
                num_topks_correct = metrics.topks_correct(
                    preds, labels, (1, 5))
                top1_err, top5_err = [(1.0 - x / preds.size(0)) * 100.0
                                      for x in num_topks_correct]

                # Gather all the predictions across all the devices.
                if cfg.NUM_GPUS > 1:
                    loss, top1_err, top5_err = du.all_reduce(
                        [loss, top1_err, top5_err])

                # Copy the stats from GPU to CPU (sync point).
                loss, top1_err, top5_err = (
                    loss.item(),
                    top1_err.item(),
                    top5_err.item(),
                )

            train_meter.iter_toc()
            # Update and log stats.
            train_meter.update_stats(top1_err, top5_err, loss, lr,
                                     inputs[0].size(0) * cfg.NUM_GPUS)
            # write to tensorboard format if available.
            if writer is not None:
                writer.add_scalars(
                    {
                        "Train/loss": loss,
                        "Train/lr": lr,
                        "Train/Top1_err": top1_err,
                        "Train/Top5_err": top5_err,
                    },
                    global_step=data_size * cur_epoch + cur_iter,
                )

        train_meter.log_iter_stats(cur_epoch, cur_iter)
        train_meter.iter_tic()

    # Log epoch stats.
    train_meter.log_epoch_stats(cur_epoch)
    train_meter.reset()
コード例 #4
0
def eval_epoch(val_loader, model, val_meter, cur_epoch, cfg):
    """
    Evaluate the model on the val set.
    Args:
        val_loader (loader): data loader to provide validation data.
        model (model): model to evaluate the performance.
        val_meter (ValMeter): meter instance to record and calculate the metrics.
        cur_epoch (int): number of the current epoch of training.
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """

    # Evaluation mode enabled. The running stats would not be updated.
    model.eval()
    val_meter.iter_tic()

    for cur_iter, (inputs, labels, _, meta) in enumerate(val_loader):
        # Transferthe data to the current GPU device.
        if isinstance(inputs, (list,)):
            for i in range(len(inputs)):
                inputs[i] = inputs[i].cuda(non_blocking=True)
        else:
            inputs = inputs.cuda(non_blocking=True)
        labels = labels.cuda()
        for key, val in meta.items():
            if isinstance(val, (list,)):
                for i in range(len(val)):
                    val[i] = val[i].cuda(non_blocking=True)
            else:
                meta[key] = val.cuda(non_blocking=True)

        if cfg.DETECTION.ENABLE:
            # Compute the predictions.
            preds = model(inputs, meta["boxes"])

            preds = preds.cpu()
            ori_boxes = meta["ori_boxes"].cpu()
            metadata = meta["metadata"].cpu()

            if cfg.NUM_GPUS > 1:
                preds = torch.cat(du.all_gather_unaligned(preds), dim=0)
                ori_boxes = torch.cat(du.all_gather_unaligned(ori_boxes), dim=0)
                metadata = torch.cat(du.all_gather_unaligned(metadata), dim=0)

            val_meter.iter_toc()
            # Update and log stats.
            val_meter.update_stats(preds.cpu(), ori_boxes.cpu(), metadata.cpu())
        else:
            preds = model(inputs)

            # Compute the errors.
            num_topks_correct = metrics.topks_correct(preds, labels, (1, 5))

            # Combine the errors across the GPUs.
            top1_err, top5_err = [
                (1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct
            ]
            if cfg.NUM_GPUS > 1:
                top1_err, top5_err = du.all_reduce([top1_err, top5_err])

            # Copy the errors from GPU to CPU (sync point).
            top1_err, top5_err = top1_err.item(), top5_err.item()

            val_meter.iter_toc()
            # Update and log stats.
            val_meter.update_stats(
                top1_err, top5_err, inputs[0].size(0) * cfg.NUM_GPUS
            )

        val_meter.log_iter_stats(cur_epoch, cur_iter)
        val_meter.iter_tic()

    # Log epoch stats.
    val_meter.log_epoch_stats(cur_epoch)
    val_meter.reset()
コード例 #5
0
ファイル: train_net.py プロジェクト: cthorey/SlowFast
def eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, writer=None):
    """
    Evaluate the model on the val set.
    Args:
        val_loader (loader): data loader to provide validation data.
        model (model): model to evaluate the performance.
        val_meter (ValMeter): meter instance to record and calculate the metrics.
        cur_epoch (int): number of the current epoch of training.
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
        writer (TensorboardWriter, optional): TensorboardWriter object
            to writer Tensorboard log.
    """

    # Evaluation mode enabled. The running stats would not be updated.
    model.eval()
    val_meter.iter_tic()

    for cur_iter, (inputs, labels, _, meta) in enumerate(val_loader):
        # Transferthe data to the current GPU device.
        if isinstance(inputs, (list, )):
            for i in range(len(inputs)):
                inputs[i] = inputs[i].cuda(non_blocking=True)
        else:
            inputs = inputs.cuda(non_blocking=True)
        labels = labels.cuda()
        for key, val in meta.items():
            if isinstance(val, (list, )):
                for i in range(len(val)):
                    val[i] = val[i].cuda(non_blocking=True)
            else:
                meta[key] = val.cuda(non_blocking=True)

        if cfg.DETECTION.ENABLE:
            # Compute the predictions.
            preds = model(inputs, meta["boxes"])

            preds = preds.cpu()
            ori_boxes = meta["ori_boxes"].cpu()
            metadata = meta["metadata"].cpu()

            if cfg.NUM_GPUS > 1:
                preds = torch.cat(du.all_gather_unaligned(preds), dim=0)
                ori_boxes = torch.cat(du.all_gather_unaligned(ori_boxes),
                                      dim=0)
                metadata = torch.cat(du.all_gather_unaligned(metadata), dim=0)

            val_meter.iter_toc()
            # Update and log stats.
            val_meter.update_stats(preds.cpu(), ori_boxes.cpu(),
                                   metadata.cpu())

        else:
            preds = model(inputs)

            if cfg.DATA.MULTI_LABEL:
                if cfg.NUM_GPUS > 1:
                    preds, labels = du.all_gather([preds, labels])
            else:
                # Compute the errors.
                num_topks_correct = metrics.topks_correct(
                    preds, labels, (1, 1))

                # Combine the errors across the GPUs.
                top1_err, top5_err = [(1.0 - x / preds.size(0)) * 100.0
                                      for x in num_topks_correct]
                if cfg.NUM_GPUS > 1:
                    top1_err, top5_err = du.all_reduce([top1_err, top5_err])

                # Copy the errors from GPU to CPU (sync point).
                top1_err, top5_err = top1_err.item(), top5_err.item()

                val_meter.iter_toc()
                # Update and log stats.
                val_meter.update_stats(top1_err, top5_err,
                                       inputs[0].size(0) * cfg.NUM_GPUS)
                # write to tensorboard format if available.
                if writer is not None:
                    writer.add_scalars(
                        {
                            "Val/Top1_err": top1_err,
                            "Val/Top5_err": top5_err
                        },
                        global_step=len(val_loader) * cur_epoch + cur_iter,
                    )

            val_meter.update_predictions(preds, labels)

        val_meter.log_iter_stats(cur_epoch, cur_iter)
        val_meter.iter_tic()

    logger.info('COMPUTING MCC')
    # Log epoch stats.
    val_meter.log_epoch_stats(cur_epoch)

    all_preds_cpu = [
        pred.clone().detach().cpu() for pred in val_meter.all_preds
    ]
    all_labels_cpu = [
        label.clone().detach().cpu() for label in val_meter.all_labels
    ]
    logger.info('PREPROC FOR  MCC')
    preds = torch.cat(all_preds_cpu)
    ypreds = torch.argmax(preds, dim=1)
    ytrue = torch.cat(all_labels_cpu)
    logger.info('COMPUTE CM')
    cm = plmetrics.ConfusionMatrix()(ypreds.to('cuda'), ytrue.to('cuda'))
    logger.info('CM COMPUTED')
    tp, tn, fn, fp = cm[1, 1], cm[0, 0], cm[0, 1], cm[1, 0]
    denom = (tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)
    mcc = (tp * tn - fp * fn) / torch.sqrt(denom)
    logger.info('COMPUTED  MCC')
    # write to tensorboard format if available.
    if writer is not None:
        if cfg.DETECTION.ENABLE:
            writer.add_scalars({"Val/mAP": val_meter.full_map},
                               global_step=cur_epoch)
        writer.plot_eval(preds=all_preds_cpu,
                         labels=all_labels_cpu,
                         global_step=cur_epoch)

    val_meter.reset()
    return mcc.item()
コード例 #6
0
def train_epoch(train_loader, model, optimizer, train_meter, cur_epoch, cfg):
    """
    Perform the video training for one epoch.
    Args:
        train_loader (loader): video training loader.
        model (model): the video model to train.
        optimizer (optim): the optimizer to perform optimization on the model's
            parameters.
        train_meter (TrainMeter): training meters to log the training performance.
        cur_epoch (int): current epoch of training.
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
    """
    # Enable train mode.
    model.train()
    if cfg.BN.FREEZE:
        model.module.freeze_fn('bn_statistics')

    train_meter.iter_tic()
    data_size = len(train_loader)

    for cur_iter, (inputs, labels, _, meta) in enumerate(train_loader):
        # Transfer the data to the current GPU device.
        if isinstance(inputs, (list, )):
            for i in range(len(inputs)):
                inputs[i] = inputs[i].cuda(non_blocking=True)
        else:
            inputs = inputs.cuda(non_blocking=True)
        if isinstance(labels, (dict, )):
            labels = {k: v.cuda() for k, v in labels.items()}
        else:
            labels = labels.cuda()
        for key, val in meta.items():
            if isinstance(val, (list, )):
                for i in range(len(val)):
                    val[i] = val[i].cuda(non_blocking=True)
            else:
                meta[key] = val.cuda(non_blocking=True)

        # Update the learning rate.
        lr = optim.get_epoch_lr(cur_epoch + float(cur_iter) / data_size, cfg)
        optim.set_lr(optimizer, lr)

        if cfg.DETECTION.ENABLE:
            # Compute the predictions.
            preds = model(inputs, meta["boxes"])

        else:
            # Perform the forward pass.
            preds = model(inputs)

        if isinstance(labels, (dict, )):
            # Explicitly declare reduction to mean.
            loss_fun = losses.get_loss_func(
                cfg.MODEL.LOSS_FUNC)(reduction="mean")

            # Compute the loss.
            loss_verb = loss_fun(preds[0], labels['verb'])
            loss_noun = loss_fun(preds[1], labels['noun'])
            loss = 0.5 * (loss_verb + loss_noun)

            # check Nan Loss.
            misc.check_nan_losses(loss)
        else:
            # Explicitly declare reduction to mean.
            loss_fun = losses.get_loss_func(
                cfg.MODEL.LOSS_FUNC)(reduction="mean")

            # Compute the loss.
            loss = loss_fun(preds, labels)

            # check Nan Loss.
            misc.check_nan_losses(loss)

        # Perform the backward pass.
        optimizer.zero_grad()
        loss.backward()
        # Update the parameters.
        optimizer.step()

        if cfg.DETECTION.ENABLE:
            if cfg.NUM_GPUS > 1:
                loss = du.all_reduce([loss])[0]
            loss = loss.item()

            train_meter.iter_toc()
            # Update and log stats.
            train_meter.update_stats(None, None, None, loss, lr)
        else:
            if isinstance(labels, (dict, )):
                # Compute the verb accuracies.
                verb_top1_acc, verb_top5_acc = metrics.topk_accuracies(
                    preds[0], labels['verb'], (1, 5))

                # Gather all the predictions across all the devices.
                if cfg.NUM_GPUS > 1:
                    loss_verb, verb_top1_acc, verb_top5_acc = du.all_reduce(
                        [loss_verb, verb_top1_acc, verb_top5_acc])

                # Copy the stats from GPU to CPU (sync point).
                loss_verb, verb_top1_acc, verb_top5_acc = (
                    loss_verb.item(),
                    verb_top1_acc.item(),
                    verb_top5_acc.item(),
                )

                # Compute the noun accuracies.
                noun_top1_acc, noun_top5_acc = metrics.topk_accuracies(
                    preds[1], labels['noun'], (1, 5))

                # Gather all the predictions across all the devices.
                if cfg.NUM_GPUS > 1:
                    loss_noun, noun_top1_acc, noun_top5_acc = du.all_reduce(
                        [loss_noun, noun_top1_acc, noun_top5_acc])

                # Copy the stats from GPU to CPU (sync point).
                loss_noun, noun_top1_acc, noun_top5_acc = (
                    loss_noun.item(),
                    noun_top1_acc.item(),
                    noun_top5_acc.item(),
                )

                # Compute the action accuracies.
                action_top1_acc, action_top5_acc = metrics.multitask_topk_accuracies(
                    (preds[0], preds[1]), (labels['verb'], labels['noun']),
                    (1, 5))
                # Gather all the predictions across all the devices.
                if cfg.NUM_GPUS > 1:
                    loss, action_top1_acc, action_top5_acc = du.all_reduce(
                        [loss, action_top1_acc, action_top5_acc])

                # Copy the stats from GPU to CPU (sync point).
                loss, action_top1_acc, action_top5_acc = (
                    loss.item(),
                    action_top1_acc.item(),
                    action_top5_acc.item(),
                )

                train_meter.iter_toc()
                # Update and log stats.
                train_meter.update_stats(
                    (verb_top1_acc, noun_top1_acc, action_top1_acc),
                    (verb_top5_acc, noun_top5_acc, action_top5_acc),
                    (loss_verb, loss_noun, loss), lr,
                    inputs[0].size(0) * cfg.NUM_GPUS)
            else:
                # Compute the errors.
                num_topks_correct = metrics.topks_correct(
                    preds, labels, (1, 5))
                top1_err, top5_err = [(1.0 - x / preds.size(0)) * 100.0
                                      for x in num_topks_correct]

                # Gather all the predictions across all the devices.
                if cfg.NUM_GPUS > 1:
                    loss, top1_err, top5_err = du.all_reduce(
                        [loss, top1_err, top5_err])

                # Copy the stats from GPU to CPU (sync point).
                loss, top1_err, top5_err = (
                    loss.item(),
                    top1_err.item(),
                    top5_err.item(),
                )

                train_meter.iter_toc()
                # Update and log stats.
                train_meter.update_stats(top1_err, top5_err, loss, lr,
                                         inputs[0].size(0) * cfg.NUM_GPUS)
        train_meter.log_iter_stats(cur_epoch, cur_iter)
        train_meter.iter_tic()
    # Log epoch stats.
    train_meter.log_epoch_stats(cur_epoch)
    train_meter.reset()
コード例 #7
0
def train_epoch(
    train_loader,
    model,
    optimizer,
    scaler,
    train_meter,
    cur_epoch,
    cfg,
    writer=None,
):
    """
    Perform the video training for one epoch.
    Args:
        train_loader (loader): video training loader.
        model (model): the video model to train.
        optimizer (optim): the optimizer to perform optimization on the model's
            parameters.
        train_meter (TrainMeter): training meters to log the training performance.
        cur_epoch (int): current epoch of training.
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
        writer (TensorboardWriter, optional): TensorboardWriter object
            to writer Tensorboard log.
    """
    # Enable train mode.
    model.train()
    train_meter.iter_tic()
    data_size = len(train_loader)

    if cfg.MIXUP.ENABLE:
        mixup_fn = MixUp(
            mixup_alpha=cfg.MIXUP.ALPHA,
            cutmix_alpha=cfg.MIXUP.CUTMIX_ALPHA,
            mix_prob=cfg.MIXUP.PROB,
            switch_prob=cfg.MIXUP.SWITCH_PROB,
            label_smoothing=cfg.MIXUP.LABEL_SMOOTH_VALUE,
            num_classes=cfg.MODEL.NUM_CLASSES,
        )

    iters_noupdate = 0
    if (cfg.MODEL.MODEL_NAME == "ContrastiveModel"
            and cfg.CONTRASTIVE.TYPE == "moco"):
        assert (cfg.CONTRASTIVE.QUEUE_LEN %
                (cfg.TRAIN.BATCH_SIZE * cfg.NUM_SHARDS) == 0)
        iters_noupdate = (cfg.CONTRASTIVE.QUEUE_LEN // cfg.TRAIN.BATCH_SIZE //
                          cfg.NUM_SHARDS)
    if cfg.MODEL.FROZEN_BN:
        misc.frozen_bn_stats(model)
    # Explicitly declare reduction to mean.
    loss_fun = losses.get_loss_func(cfg.MODEL.LOSS_FUNC)(reduction="mean")

    for cur_iter, (inputs, labels, index, time,
                   meta) in enumerate(train_loader):
        # Transfer the data to the current GPU device.
        if cfg.NUM_GPUS:
            if isinstance(inputs, (list, )):
                for i in range(len(inputs)):
                    if isinstance(inputs[i], (list, )):
                        for j in range(len(inputs[i])):
                            inputs[i][j] = inputs[i][j].cuda(non_blocking=True)
                    else:
                        inputs[i] = inputs[i].cuda(non_blocking=True)
            else:
                inputs = inputs.cuda(non_blocking=True)
            labels = labels.cuda()
            for key, val in meta.items():
                if isinstance(val, (list, )):
                    for i in range(len(val)):
                        val[i] = val[i].cuda(non_blocking=True)
                else:
                    meta[key] = val.cuda(non_blocking=True)
            index = index.cuda()
            time = time.cuda()
        batch_size = (inputs[0][0].size(0)
                      if isinstance(inputs[0], list) else inputs[0].size(0))
        # Update the learning rate.
        epoch_exact = cur_epoch + float(cur_iter) / data_size
        lr = optim.get_epoch_lr(epoch_exact, cfg)
        optim.set_lr(optimizer, lr)

        train_meter.data_toc()
        if cfg.MIXUP.ENABLE:
            samples, labels = mixup_fn(inputs[0], labels)
            inputs[0] = samples

        with torch.cuda.amp.autocast(enabled=cfg.TRAIN.MIXED_PRECISION):

            # Explicitly declare reduction to mean.
            perform_backward = True
            optimizer.zero_grad()

            if cfg.MODEL.MODEL_NAME == "ContrastiveModel":
                (
                    model,
                    preds,
                    partial_loss,
                    perform_backward,
                ) = contrastive_forward(model, cfg, inputs, index, time,
                                        epoch_exact, scaler)
            elif cfg.DETECTION.ENABLE:
                # Compute the predictions.
                preds = model(inputs, meta["boxes"])
            else:
                preds = model(inputs)
        if cfg.TASK == "ssl" and cfg.MODEL.MODEL_NAME == "ContrastiveModel":
            labels = torch.zeros(preds.size(0),
                                 dtype=labels.dtype,
                                 device=labels.device)

        if cfg.MODEL.MODEL_NAME == "ContrastiveModel" and partial_loss:
            loss = partial_loss
        else:
            # Compute the loss.
            loss = loss_fun(preds, labels)

        # check Nan Loss.
        misc.check_nan_losses(loss)

        if perform_backward:
            scaler.scale(loss).backward()
        # Unscales the gradients of optimizer's assigned params in-place
        scaler.unscale_(optimizer)
        # Clip gradients if necessary
        if cfg.SOLVER.CLIP_GRAD_VAL:
            torch.nn.utils.clip_grad_value_(model.parameters(),
                                            cfg.SOLVER.CLIP_GRAD_VAL)
        elif cfg.SOLVER.CLIP_GRAD_L2NORM:
            torch.nn.utils.clip_grad_norm_(model.parameters(),
                                           cfg.SOLVER.CLIP_GRAD_L2NORM)

        model = cancel_swav_gradients(model, cfg, epoch_exact)
        if cur_iter < iters_noupdate and cur_epoch == 0:  #  for e.g. MoCo
            logger.info("Not updating parameters {}/{}".format(
                cur_iter, iters_noupdate))
        else:
            # Update the parameters.
            scaler.step(optimizer)
        scaler.update()

        if cfg.MIXUP.ENABLE:
            _top_max_k_vals, top_max_k_inds = torch.topk(labels,
                                                         2,
                                                         dim=1,
                                                         largest=True,
                                                         sorted=True)
            idx_top1 = torch.arange(labels.shape[0]), top_max_k_inds[:, 0]
            idx_top2 = torch.arange(labels.shape[0]), top_max_k_inds[:, 1]
            preds = preds.detach()
            preds[idx_top1] += preds[idx_top2]
            preds[idx_top2] = 0.0
            labels = top_max_k_inds[:, 0]

        if cfg.DETECTION.ENABLE:
            if cfg.NUM_GPUS > 1:
                loss = du.all_reduce([loss])[0]
            loss = loss.item()

            # Update and log stats.
            train_meter.update_stats(None, None, None, loss, lr)
            # write to tensorboard format if available.
            if writer is not None:
                writer.add_scalars(
                    {
                        "Train/loss": loss,
                        "Train/lr": lr
                    },
                    global_step=data_size * cur_epoch + cur_iter,
                )

        else:
            top1_err, top5_err = None, None
            if cfg.DATA.MULTI_LABEL:
                # Gather all the predictions across all the devices.
                if cfg.NUM_GPUS > 1:
                    [loss] = du.all_reduce([loss])
                loss = loss.item()
            else:
                # Compute the errors.
                num_topks_correct = metrics.topks_correct(
                    preds, labels, (1, 5))
                top1_err, top5_err = [(1.0 - x / preds.size(0)) * 100.0
                                      for x in num_topks_correct]
                # Gather all the predictions across all the devices.
                if cfg.NUM_GPUS > 1:
                    loss, top1_err, top5_err = du.all_reduce(
                        [loss.detach(), top1_err, top5_err])

                # Copy the stats from GPU to CPU (sync point).
                loss, top1_err, top5_err = (
                    loss.item(),
                    top1_err.item(),
                    top5_err.item(),
                )

            # Update and log stats.
            train_meter.update_stats(
                top1_err,
                top5_err,
                loss,
                lr,
                batch_size * max(
                    cfg.NUM_GPUS, 1
                ),  # If running  on CPU (cfg.NUM_GPUS == 1), use 1 to represent 1 CPU.
            )
            # write to tensorboard format if available.
            if writer is not None:
                writer.add_scalars(
                    {
                        "Train/loss": loss,
                        "Train/lr": lr,
                        "Train/Top1_err": top1_err,
                        "Train/Top5_err": top5_err,
                    },
                    global_step=data_size * cur_epoch + cur_iter,
                )

        torch.cuda.synchronize()
        train_meter.iter_toc()  # do measure allreduce for this meter
        train_meter.log_iter_stats(cur_epoch, cur_iter)
        torch.cuda.synchronize()
        train_meter.iter_tic()
    del inputs
    # Log epoch stats.
    train_meter.log_epoch_stats(cur_epoch)
    train_meter.reset()
コード例 #8
0
def eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, train_loader,
               writer):
    """
    Evaluate the model on the val set.
    Args:
        val_loader (loader): data loader to provide validation data.
        model (model): model to evaluate the performance.
        val_meter (ValMeter): meter instance to record and calculate the metrics.
        cur_epoch (int): number of the current epoch of training.
        cfg (CfgNode): configs. Details can be found in
            slowfast/config/defaults.py
        writer (TensorboardWriter, optional): TensorboardWriter object
            to writer Tensorboard log.
    """

    # Evaluation mode enabled. The running stats would not be updated.
    model.eval()
    val_meter.iter_tic()

    for cur_iter, (inputs, labels, index, time, meta) in enumerate(val_loader):
        if cfg.NUM_GPUS:
            # Transferthe data to the current GPU device.
            if isinstance(inputs, (list, )):
                for i in range(len(inputs)):
                    inputs[i] = inputs[i].cuda(non_blocking=True)
            else:
                inputs = inputs.cuda(non_blocking=True)
            labels = labels.cuda()
            for key, val in meta.items():
                if isinstance(val, (list, )):
                    for i in range(len(val)):
                        val[i] = val[i].cuda(non_blocking=True)
                else:
                    meta[key] = val.cuda(non_blocking=True)
            index = index.cuda()
            time = time.cuda()
        batch_size = (inputs[0][0].size(0)
                      if isinstance(inputs[0], list) else inputs[0].size(0))
        val_meter.data_toc()

        if cfg.DETECTION.ENABLE:
            # Compute the predictions.
            preds = model(inputs, meta["boxes"])
            ori_boxes = meta["ori_boxes"]
            metadata = meta["metadata"]

            if cfg.NUM_GPUS:
                preds = preds.cpu()
                ori_boxes = ori_boxes.cpu()
                metadata = metadata.cpu()

            if cfg.NUM_GPUS > 1:
                preds = torch.cat(du.all_gather_unaligned(preds), dim=0)
                ori_boxes = torch.cat(du.all_gather_unaligned(ori_boxes),
                                      dim=0)
                metadata = torch.cat(du.all_gather_unaligned(metadata), dim=0)

            val_meter.iter_toc()
            # Update and log stats.
            val_meter.update_stats(preds, ori_boxes, metadata)

        else:
            if cfg.TASK == "ssl" and cfg.MODEL.MODEL_NAME == "ContrastiveModel":
                if not cfg.CONTRASTIVE.KNN_ON:
                    return
                train_labels = (model.module.train_labels if hasattr(
                    model, "module") else model.train_labels)
                yd, yi = model(inputs, index, time)
                K = yi.shape[1]
                C = (cfg.CONTRASTIVE.NUM_CLASSES_DOWNSTREAM
                     )  # eg 400 for Kinetics400
                candidates = train_labels.view(1, -1).expand(batch_size, -1)
                retrieval = torch.gather(candidates, 1, yi)
                retrieval_one_hot = torch.zeros((batch_size * K, C)).cuda()
                retrieval_one_hot.scatter_(1, retrieval.view(-1, 1), 1)
                yd_transform = yd.clone().div_(cfg.CONTRASTIVE.T).exp_()
                probs = torch.mul(
                    retrieval_one_hot.view(batch_size, -1, C),
                    yd_transform.view(batch_size, -1, 1),
                )
                preds = torch.sum(probs, 1)
            else:
                preds = model(inputs)

            if cfg.DATA.MULTI_LABEL:
                if cfg.NUM_GPUS > 1:
                    preds, labels = du.all_gather([preds, labels])
            else:
                # Compute the errors.
                num_topks_correct = metrics.topks_correct(
                    preds, labels, (1, 5))

                # Combine the errors across the GPUs.
                top1_err, top5_err = [(1.0 - x / preds.size(0)) * 100.0
                                      for x in num_topks_correct]
                if cfg.NUM_GPUS > 1:
                    top1_err, top5_err = du.all_reduce([top1_err, top5_err])

                # Copy the errors from GPU to CPU (sync point).
                top1_err, top5_err = top1_err.item(), top5_err.item()

                val_meter.iter_toc()
                # Update and log stats.
                val_meter.update_stats(
                    top1_err,
                    top5_err,
                    batch_size * max(
                        cfg.NUM_GPUS, 1
                    ),  # If running  on CPU (cfg.NUM_GPUS == 1), use 1 to represent 1 CPU.
                )
                # write to tensorboard format if available.
                if writer is not None:
                    writer.add_scalars(
                        {
                            "Val/Top1_err": top1_err,
                            "Val/Top5_err": top5_err
                        },
                        global_step=len(val_loader) * cur_epoch + cur_iter,
                    )

            val_meter.update_predictions(preds, labels)

        val_meter.log_iter_stats(cur_epoch, cur_iter)
        val_meter.iter_tic()

    # Log epoch stats.
    val_meter.log_epoch_stats(cur_epoch)
    # write to tensorboard format if available.
    if writer is not None:
        if cfg.DETECTION.ENABLE:
            writer.add_scalars({"Val/mAP": val_meter.full_map},
                               global_step=cur_epoch)
        else:
            all_preds = [pred.clone().detach() for pred in val_meter.all_preds]
            all_labels = [
                label.clone().detach() for label in val_meter.all_labels
            ]
            if cfg.NUM_GPUS:
                all_preds = [pred.cpu() for pred in all_preds]
                all_labels = [label.cpu() for label in all_labels]
            writer.plot_eval(preds=all_preds,
                             labels=all_labels,
                             global_step=cur_epoch)

    val_meter.reset()