コード例 #1
0
    def setup_bot(self, settings, spec, items, extractors):
        """
        Perform any initialization needed for crawling using this plugin
        """
        _item_template_pages = sorted(([
            t['scrapes'],
            dict_to_page(t, 'annotated_body'),
            t.get('extractors', [])
        ] for t in spec['templates'] if t.get('page_type', 'item') == 'item'),
                                      key=lambda pair: pair[0])

        self.itemcls_info = {}
        if settings.get('AUTO_PAGINATION'):
            self.html_link_extractor = PaginationExtractor()
        else:
            self.html_link_extractor = HtmlLinkExtractor()
        for itemclass_name, triplets in groupby(_item_template_pages,
                                                itemgetter(0)):
            page_extractors_pairs = map(itemgetter(1, 2), triplets)
            schema = items[itemclass_name]
            item_cls = SlybotItem.create_iblitem_class(schema)

            page_descriptor_pairs = []
            for page, template_extractors in page_extractors_pairs:
                item_descriptor = create_slybot_item_descriptor(schema)
                apply_extractors(item_descriptor, template_extractors,
                                 extractors)
                page_descriptor_pairs.append((page, item_descriptor))

            extractor = InstanceBasedLearningExtractor(page_descriptor_pairs)

            self.itemcls_info[itemclass_name] = {
                'class': item_cls,
                'descriptor': item_descriptor,
                'extractor': extractor,
            }

        # generate ibl extractor for links pages
        _links_pages = [
            dict_to_page(t, 'annotated_body') for t in spec['templates']
            if t.get('page_type') == 'links'
        ]
        _links_item_descriptor = create_slybot_item_descriptor({'fields': {}})
        self._links_ibl_extractor = InstanceBasedLearningExtractor(
            [(t, _links_item_descriptor) for t in _links_pages]) \
            if _links_pages else None

        self.build_url_filter(spec)
コード例 #2
0
ファイル: annotations.py プロジェクト: FrankieChan885/portia
    def setup_bot(self, settings, spec, items, extractors):
        """
        Perform any initialization needed for crawling using this plugin
        """
        _item_template_pages = sorted((
            [t.get('scrapes'), dict_to_page(t, 'annotated_body'),
             t.get('extractors', []), t.get('version', '0.12.0')]
            for t in spec['templates'] if t.get('page_type', 'item') == 'item'
        ), key=lambda x: x[0])
        self.item_classes = {}
        self.template_scrapes = {template.get('page_id'): template['scrapes']
                                 for template in spec.get('templates')}
        self.html_link_extractor = HtmlLinkExtractor()
        for schema_name, schema in items.items():
            if schema_name not in self.item_classes:
                if not schema.get('name'):
                    schema['name'] = schema_name
                item_cls = SlybotItem.create_iblitem_class(schema)
                self.item_classes[schema_name] = item_cls

        # Create descriptors and apply additional extractors to fields
        page_descriptor_pairs = []
        self.schema_descriptors = {}
        for default, template, template_extractors, v in _item_template_pages:
            descriptors = OrderedDict()
            for schema_name, schema in items.items():
                item_descriptor = create_slybot_item_descriptor(schema,
                                                                schema_name)
                apply_extractors(item_descriptor, template_extractors,
                                 extractors)
                descriptors[schema_name] = item_descriptor
            descriptor = descriptors.values() or [{}]
            descriptors['#default'] = descriptors.get(default, descriptor[0])
            self.schema_descriptors[template.page_id] = descriptors['#default']
            page_descriptor_pairs.append((template, descriptors, v))
            add_extractors_to_descriptors(descriptors, extractors)

        grouped = itertools.groupby(sorted(page_descriptor_pairs,
                                           key=operator.itemgetter(2)),
                                    lambda x: x[2] < '0.13.0')
        self.extractors = []
        for version, group in grouped:
            if version:
                self.extractors.append(
                    InstanceBasedLearningExtractor(
                        [(page, scrapes['#default'])
                         for page, scrapes, version in group]))
            else:
                self.extractors.append(SlybotIBLExtractor(list(group)))

        # generate ibl extractor for links pages
        _links_pages = [dict_to_page(t, 'annotated_body')
                        for t in spec['templates']
                        if t.get('page_type') == 'links']
        _links_item_descriptor = create_slybot_item_descriptor({'fields': {}})
        self._links_ibl_extractor = InstanceBasedLearningExtractor(
            [(t, _links_item_descriptor) for t in _links_pages]) \
            if _links_pages else None

        self.build_url_filter(spec)
コード例 #3
0
ファイル: annotations.py プロジェクト: BenJamesbabala/portia
    def setup_bot(self, settings, spec, items, extractors):
        """
        Perform any initialization needed for crawling using this plugin
        """
        _item_template_pages = sorted((
            [t['scrapes'], dict_to_page(t, 'annotated_body'),
             t.get('extractors', [])]
            for t in spec['templates'] if t.get('page_type', 'item') == 'item'
        ), key=lambda pair: pair[0])

        self.itemcls_info = {}
        if settings.get('AUTO_PAGINATION'):
            self.html_link_extractor = PaginationExtractor()
        else:
            self.html_link_extractor = HtmlLinkExtractor()
        for itemclass_name, triplets in groupby(_item_template_pages,
                                                itemgetter(0)):
            page_extractors_pairs = map(itemgetter(1, 2), triplets)
            schema = items[itemclass_name]
            item_cls = SlybotItem.create_iblitem_class(schema)

            page_descriptor_pairs = []
            for page, template_extractors in page_extractors_pairs:
                item_descriptor = create_slybot_item_descriptor(schema)
                apply_extractors(item_descriptor, template_extractors,
                                 extractors)
                page_descriptor_pairs.append((page, item_descriptor))

            extractor = InstanceBasedLearningExtractor(page_descriptor_pairs)

            self.itemcls_info[itemclass_name] = {
                'class': item_cls,
                'descriptor': item_descriptor,
                'extractor': extractor,
            }

        # generate ibl extractor for links pages
        _links_pages = [dict_to_page(t, 'annotated_body')
                        for t in spec['templates']
                        if t.get('page_type') == 'links']
        _links_item_descriptor = create_slybot_item_descriptor({'fields': {}})
        self._links_ibl_extractor = InstanceBasedLearningExtractor(
            [(t, _links_item_descriptor) for t in _links_pages]) \
            if _links_pages else None

        self.build_url_filter(spec)
コード例 #4
0
ファイル: spider.py プロジェクト: ra2003/slybot
    def __init__(self, name, spec, item_schemas, all_extractors, **kw):
        super(IblSpider, self).__init__(name, **kw)
        spec = deepcopy(spec)
        for key, val in kw.items():
            if isinstance(val, basestring) and key in ['start_urls', 'exclude_patterns', 'follow_patterns', 'allowed_domains']:
                val = val.splitlines()
            spec[key] = val

        self._item_template_pages = sorted((
            [t['scrapes'], dict_to_page(t, 'annotated_body'),
            t.get('extractors', [])] \
            for t in spec['templates'] if t.get('page_type', 'item') == 'item'
        ), key=lambda pair: pair[0])

        # generate ibl extractor for links pages
        _links_pages = [dict_to_page(t, 'annotated_body')
                for t in spec['templates'] if t.get('page_type') == 'links']
        _links_item_descriptor = create_slybot_item_descriptor({'fields': {}})
        self._links_ibl_extractor = InstanceBasedLearningExtractor([(t, _links_item_descriptor) for t in _links_pages]) \
                if _links_pages else None

        self._ipages = [page for _, page, _ in self._item_template_pages]

        self.html_link_extractor = HtmlLinkExtractor()
        self.rss_link_extractor = RssLinkExtractor()
        self.build_url_filter(spec)

        self.itemcls_info = {}
        for itemclass_name, triplets in itertools.groupby(self._item_template_pages, operator.itemgetter(0)):
            page_extractors_pairs = map(operator.itemgetter(1, 2), triplets)
            schema = item_schemas[itemclass_name]
            item_cls = SlybotItem.create_iblitem_class(schema)

            page_descriptor_pairs = []
            for page, template_extractors in page_extractors_pairs:
                item_descriptor = create_slybot_item_descriptor(schema)
                apply_extractors(item_descriptor, template_extractors, all_extractors)
                page_descriptor_pairs.append((page, item_descriptor))

            extractor = InstanceBasedLearningExtractor(page_descriptor_pairs)

            self.itemcls_info[itemclass_name] = {
                'class': item_cls,
                'descriptor': item_descriptor,
                'extractor': extractor,
            }

        self.login_requests = []
        self.form_requests = []
        self._start_requests = []
        self.generic_form = GenericForm(**kw)
        self._create_init_requests(spec.get("init_requests", []))
        self._process_start_urls(spec)
        self.allowed_domains = spec.get('allowed_domains',
                                        self._get_allowed_domains(self._ipages))
        if not self.allowed_domains:
            self.allowed_domains = None
コード例 #5
0
ファイル: annotations.py プロジェクト: hackoose/portia
    def setup_bot(self, settings, spec, items, extractors):
        """
        Perform any initialization needed for crawling using this plugin
        """
        _item_template_pages = sorted(
            (
                [t["scrapes"], dict_to_page(t, "annotated_body"), t.get("extractors", [])]
                for t in spec["templates"]
                if t.get("page_type", "item") == "item"
            ),
            key=lambda pair: pair[0],
        )

        self.itemcls_info = {}
        self.html_link_extractor = HtmlLinkExtractor()
        self.rss_link_extractor = RssLinkExtractor()
        for itemclass_name, triplets in groupby(_item_template_pages, itemgetter(0)):
            page_extractors_pairs = map(itemgetter(1, 2), triplets)
            schema = items[itemclass_name]
            item_cls = SlybotItem.create_iblitem_class(schema)

            page_descriptor_pairs = []
            for page, template_extractors in page_extractors_pairs:
                item_descriptor = create_slybot_item_descriptor(schema)
                apply_extractors(item_descriptor, template_extractors, extractors)
                page_descriptor_pairs.append((page, item_descriptor))

            extractor = InstanceBasedLearningExtractor(page_descriptor_pairs)

            self.itemcls_info[itemclass_name] = {
                "class": item_cls,
                "descriptor": item_descriptor,
                "extractor": extractor,
            }

        # generate ibl extractor for links pages
        _links_pages = [dict_to_page(t, "annotated_body") for t in spec["templates"] if t.get("page_type") == "links"]
        _links_item_descriptor = create_slybot_item_descriptor({"fields": {}})
        self._links_ibl_extractor = (
            InstanceBasedLearningExtractor([(t, _links_item_descriptor) for t in _links_pages])
            if _links_pages
            else None
        )

        self.build_url_filter(spec)
コード例 #6
0
ファイル: annotations.py プロジェクト: TimoC1982/portia
    def setup_bot(self, settings, spec, items, extractors):
        """
        Perform any initialization needed for crawling using this plugin
        """
        _item_template_pages = sorted((
            [t.get('scrapes'), dict_to_page(t, 'annotated_body'),
             t.get('extractors', [])]
            for t in spec['templates'] if t.get('page_type', 'item') == 'item'
        ))
        self.item_classes = {}
        self.html_link_extractor = HtmlLinkExtractor()
        for schema_name, schema in items.items():
            if schema_name not in self.item_classes:
                if not schema.get('name'):
                    schema['name'] = schema_name
                item_cls = SlybotItem.create_iblitem_class(schema)
                self.item_classes[schema_name] = item_cls

        # Create descriptors and apply additional extractors to fields
        page_descriptor_pairs = []
        for default, template, template_extractors in _item_template_pages:
            descriptors = OrderedDict()
            for schema_name, schema in items.items():
                item_descriptor = create_slybot_item_descriptor(schema,
                                                                schema_name)
                apply_extractors(item_descriptor, template_extractors,
                                 extractors)
                descriptors[schema_name] = item_descriptor
            descriptor = descriptors.values() or [{}]
            descriptors['#default'] = descriptors.get(default, descriptor[0])
            page_descriptor_pairs.append((template, descriptors))

        self.extractors = SlybotIBLExtractor(page_descriptor_pairs)

        # generate ibl extractor for links pages
        _links_pages = [dict_to_page(t, 'annotated_body')
                        for t in spec['templates']
                        if t.get('page_type') == 'links']
        _links_item_descriptor = create_slybot_item_descriptor({'fields': {}})
        self._links_ibl_extractor = InstanceBasedLearningExtractor(
            [(t, _links_item_descriptor) for t in _links_pages]) \
            if _links_pages else None

        self.build_url_filter(spec)
コード例 #7
0
    def setup_bot(self, settings, spec, items, extractors, logger):
        """
        Perform any initialization needed for crawling using this plugin
        """
        self.logger = logger
        templates = map(self._get_annotated_template, spec['templates'])

        _item_template_pages = sorted(([
            t.get('scrapes'),
            dict_to_page(t, 'annotated_body'),
            t.get('extractors', []),
            t.get('version', '0.12.0')
        ] for t in templates if t.get('page_type', 'item') == 'item'),
                                      key=lambda x: x[0])
        self.item_classes = {}
        self.template_scrapes = {
            template.get('page_id'): template['scrapes']
            for template in templates
        }
        if (settings.get('AUTO_PAGINATION')
                or spec.get('links_to_follow') == 'auto'):
            self.html_link_extractor = PaginationExtractor()
        else:
            self.html_link_extractor = HtmlLinkExtractor()
        for schema_name, schema in items.items():
            if schema_name not in self.item_classes:
                if not schema.get('name'):
                    schema['name'] = schema_name
                item_cls = SlybotItem.create_iblitem_class(schema)
                self.item_classes[schema_name] = item_cls

        # Create descriptors and apply additional extractors to fields
        page_descriptor_pairs = []
        self.schema_descriptors = {}
        for default, template, template_extractors, v in _item_template_pages:
            descriptors = OrderedDict()
            for schema_name, schema in items.items():
                item_descriptor = create_slybot_item_descriptor(
                    schema, schema_name)
                apply_extractors(item_descriptor, template_extractors,
                                 extractors)
                descriptors[schema_name] = item_descriptor
            descriptor = descriptors.values() or [{}]
            descriptors['#default'] = descriptors.get(default, descriptor[0])
            self.schema_descriptors[template.page_id] = descriptors['#default']
            page_descriptor_pairs.append((template, descriptors, v))
            add_extractors_to_descriptors(descriptors, extractors)

        grouped = itertools.groupby(
            sorted(page_descriptor_pairs, key=operator.itemgetter(2)),
            lambda x: x[2] < '0.13.0')
        self.extractors = []
        for version, group in grouped:
            if version:
                self.extractors.append(
                    InstanceBasedLearningExtractor([
                        (page, scrapes['#default'])
                        for page, scrapes, version in group
                    ]))
            else:
                self.extractors.append(SlybotIBLExtractor(list(group)))

        # generate ibl extractor for links pages
        _links_pages = [
            dict_to_page(t, 'annotated_body') for t in templates
            if t.get('page_type') == 'links'
        ]
        _links_item_descriptor = create_slybot_item_descriptor({'fields': {}})
        self._links_ibl_extractor = InstanceBasedLearningExtractor(
            [(t, _links_item_descriptor) for t in _links_pages]) \
            if _links_pages else None

        self.build_url_filter(spec)
        # Clustering
        self.template_names = [t.get('page_id') for t in spec['templates']]
        if settings.get('PAGE_CLUSTERING'):
            try:
                import page_clustering
                self.clustering = page_clustering.kmeans_from_samples(
                    spec['templates'])
                self.logger.info("Clustering activated")
            except ImportError:
                self.clustering = None
                self.logger.warning(
                    "Clustering could not be used because it is not installed")
        else:
            self.clustering = None
コード例 #8
0
class Annotations(object):
    """
    Base Class for adding plugins to Portia Web and Slybot.
    """
    def setup_bot(self, settings, spec, items, extractors, logger):
        """
        Perform any initialization needed for crawling using this plugin
        """
        self.logger = logger
        templates = map(self._get_annotated_template, spec['templates'])

        _item_template_pages = sorted(([
            t.get('scrapes'),
            dict_to_page(t, 'annotated_body'),
            t.get('extractors', []),
            t.get('version', '0.12.0')
        ] for t in templates if t.get('page_type', 'item') == 'item'),
                                      key=lambda x: x[0])
        self.item_classes = {}
        self.template_scrapes = {
            template.get('page_id'): template['scrapes']
            for template in templates
        }
        if (settings.get('AUTO_PAGINATION')
                or spec.get('links_to_follow') == 'auto'):
            self.html_link_extractor = PaginationExtractor()
        else:
            self.html_link_extractor = HtmlLinkExtractor()
        for schema_name, schema in items.items():
            if schema_name not in self.item_classes:
                if not schema.get('name'):
                    schema['name'] = schema_name
                item_cls = SlybotItem.create_iblitem_class(schema)
                self.item_classes[schema_name] = item_cls

        # Create descriptors and apply additional extractors to fields
        page_descriptor_pairs = []
        self.schema_descriptors = {}
        for default, template, template_extractors, v in _item_template_pages:
            descriptors = OrderedDict()
            for schema_name, schema in items.items():
                item_descriptor = create_slybot_item_descriptor(
                    schema, schema_name)
                apply_extractors(item_descriptor, template_extractors,
                                 extractors)
                descriptors[schema_name] = item_descriptor
            descriptor = descriptors.values() or [{}]
            descriptors['#default'] = descriptors.get(default, descriptor[0])
            self.schema_descriptors[template.page_id] = descriptors['#default']
            page_descriptor_pairs.append((template, descriptors, v))
            add_extractors_to_descriptors(descriptors, extractors)

        grouped = itertools.groupby(
            sorted(page_descriptor_pairs, key=operator.itemgetter(2)),
            lambda x: x[2] < '0.13.0')
        self.extractors = []
        for version, group in grouped:
            if version:
                self.extractors.append(
                    InstanceBasedLearningExtractor([
                        (page, scrapes['#default'])
                        for page, scrapes, version in group
                    ]))
            else:
                self.extractors.append(SlybotIBLExtractor(list(group)))

        # generate ibl extractor for links pages
        _links_pages = [
            dict_to_page(t, 'annotated_body') for t in templates
            if t.get('page_type') == 'links'
        ]
        _links_item_descriptor = create_slybot_item_descriptor({'fields': {}})
        self._links_ibl_extractor = InstanceBasedLearningExtractor(
            [(t, _links_item_descriptor) for t in _links_pages]) \
            if _links_pages else None

        self.build_url_filter(spec)
        # Clustering
        self.template_names = [t.get('page_id') for t in spec['templates']]
        if settings.get('PAGE_CLUSTERING'):
            try:
                import page_clustering
                self.clustering = page_clustering.kmeans_from_samples(
                    spec['templates'])
                self.logger.info("Clustering activated")
            except ImportError:
                self.clustering = None
                self.logger.warning(
                    "Clustering could not be used because it is not installed")
        else:
            self.clustering = None

    def _get_annotated_template(self, template):
        if template.get('version', '0.12.0') >= '0.13.0':
            _build_sample(template)
        return template

    def handle_html(self, response, seen=None):
        htmlpage = htmlpage_from_response(response)
        items, link_regions = self.extract_items(htmlpage)
        htmlpage.headers['n_items'] = len(items)
        try:
            response.meta['n_items'] = len(items)
        except AttributeError:
            pass  # response not tied to any request
        for item in items:
            yield item
        for request in self._process_link_regions(htmlpage, link_regions):
            yield request

    def extract_items(self, htmlpage):
        """This method is also called from UI webservice to extract items"""
        for extractor in self.extractors:
            items, links = self._do_extract_items_from(htmlpage, extractor)
            if items:
                return items, links
        return [], []

    def _do_extract_items_from(self, htmlpage, extractor):
        # Try to predict template to use
        pref_template_id = None
        template_cluster = _CLUSTER_NA
        if self.clustering:
            self.clustering.add_page(htmlpage)
            if self.clustering.is_fit:
                clt = self.clustering.classify(htmlpage)
                if clt != -1:
                    template_cluster = self.template_names[clt]
                    pref_template_id = template_cluster
                else:
                    template_cluster = _CLUSTER_OUTLIER
        extracted_data, template = extractor.extract(htmlpage,
                                                     pref_template_id)
        link_regions = []
        for ddict in extracted_data or []:
            link_regions.extend(ddict.pop("_links", []))
        descriptor = None
        unprocessed = False
        if template is not None and hasattr(template, 'descriptor'):
            descriptor = template.descriptor()
            if hasattr(descriptor, 'name'):
                item_cls_name = descriptor.name
            elif hasattr(descriptor, 'get'):
                item_cls_name = descriptor.get('name',
                                               descriptor.get('display_name'))
            else:
                item_cls_name = ''
        else:
            unprocessed = True
            try:
                descriptor = self.schema_descriptors[template.id]
                item_cls_name = self.template_scrapes[template.id]
            except AttributeError:
                descriptor = sorted(self.schema_descriptors.items())[0][1]
                item_cls_name = sorted(self.template_scrapes.items())[0][1]
        item_cls = self.item_classes.get(item_cls_name)
        items = []
        for processed_attributes in extracted_data or []:
            if processed_attributes.get('_type') in self.item_classes:
                _type = processed_attributes['_type']
                item = self.item_classes[_type](processed_attributes)
                item['_type'] = item.display_name()
            elif unprocessed:
                item = self._process_attributes(processed_attributes,
                                                descriptor, htmlpage)
                if item_cls:
                    item = item_cls(item)
            elif item_cls:
                item = item_cls(processed_attributes)
            else:
                item = dict(processed_attributes)
            item['url'] = htmlpage.url
            item['_template'] = str(template.id)
            item.setdefault('_type', item_cls_name)
            if not isinstance(item, SlybotItem):
                default_meta = {
                    'type': 'text',
                    'required': False,
                    'vary': False
                }
                item_cls = SlybotItem.create_iblitem_class(
                    {'fields': {k: default_meta
                                for k in item}})
                item = item_cls(**item)
            if self.clustering:
                item['_template_cluster'] = template_cluster
            items.append(item)
        return items, link_regions

    def _process_attributes(self, item, descriptor, htmlpage):
        new_item = {}
        try:
            attr_map = descriptor.attribute_map
        except AttributeError:
            attr_map = {}
        page = getattr(htmlpage, 'htmlpage', htmlpage)
        for field, value in item.items():
            if field.startswith('_sticky'):
                continue
            if field == 'variants':
                value = [
                    self._process_attributes(v, descriptor, page)
                    for v in value
                ]
            elif field in attr_map:
                value = [attr_map[field].adapt(v, page) for v in value]
            new_item[field] = value
        return new_item

    def build_url_filter(self, spec):
        """make a filter for links"""
        respect_nofollow = spec.get('respect_nofollow', True)

        if spec.get("links_to_follow") == "none":
            url_filterf = lambda x: False
        elif spec.get("links_to_follow") == "all":
            if respect_nofollow:
                url_filterf = lambda x: x.nofollow
            else:
                url_filterf = lambda x: True
        else:  # patterns
            patterns = spec.get('follow_patterns')
            excludes = spec.get('exclude_patterns')
            pattern_fn = include_exclude_filter(patterns, excludes)

            if respect_nofollow:
                url_filterf = lambda x: not x.nofollow and pattern_fn(x.url)
            else:
                url_filterf = lambda x: pattern_fn(x.url)

        self.url_filterf = url_filterf

    def _filter_link(self, link, seen):
        url = link.url
        if self.url_filterf(link):
            # filter out duplicate urls, later we should handle link text
            if url not in seen:
                seen.add(url)
                request = Request(url)
                if link.text:
                    request.meta['link_text'] = link.text
                return request

    def _process_link_regions(self, htmlpage, link_regions):
        """Process link regions if any, and generate requests"""
        if link_regions:
            for link_region in link_regions:
                htmlregion = HtmlPage(htmlpage.url,
                                      htmlpage.headers,
                                      link_region,
                                      encoding=htmlpage.encoding)
                for request in self._requests_to_follow(htmlregion):
                    yield request
        else:
            for request in self._requests_to_follow(htmlpage):
                yield request

    def _requests_to_follow(self, htmlpage):
        if self._links_ibl_extractor is not None:
            extracted = self._links_ibl_extractor.extract(htmlpage)[0]
            if extracted:
                extracted_regions = extracted[0].get('_links', [])
                seen = set()
                for region in extracted_regions:
                    htmlregion = HtmlPage(htmlpage.url,
                                          htmlpage.headers,
                                          region,
                                          encoding=htmlpage.encoding)
                    for request in self._request_to_follow_from_region(
                            htmlregion):
                        if request.url in seen:
                            continue
                        seen.add(request.url)
                        yield request
        else:
            for request in self._request_to_follow_from_region(htmlpage):
                yield request

    def _request_to_follow_from_region(self, htmlregion):
        seen = set()
        for link in self.html_link_extractor.links_to_follow(htmlregion):
            request = self._filter_link(link, seen)
            if request is not None:
                yield request

    def handle_xml(self, response, seen):
        _type = XML_APPLICATION_TYPE(response.headers.get('Content-Type', ''))
        _type = _type.groupdict()['type'] if _type else 'xml'
        try:
            link_extractor = create_linkextractor_from_specs({
                'type': _type,
                'value': ''
            })
        except ValueError:
            link_extractor = SitemapLinkExtractor()
        for link in link_extractor.links_to_follow(response):
            request = self._filter_link(link, seen)
            if request:
                yield request
コード例 #9
0
ファイル: annotations.py プロジェクト: BenJamesbabala/portia
class Annotations(object):
    """
    Base Class for adding plugins to Portia Web and Slybot.
    """

    def setup_bot(self, settings, spec, items, extractors):
        """
        Perform any initialization needed for crawling using this plugin
        """
        _item_template_pages = sorted((
            [t['scrapes'], dict_to_page(t, 'annotated_body'),
             t.get('extractors', [])]
            for t in spec['templates'] if t.get('page_type', 'item') == 'item'
        ), key=lambda pair: pair[0])

        self.itemcls_info = {}
        if settings.get('AUTO_PAGINATION'):
            self.html_link_extractor = PaginationExtractor()
        else:
            self.html_link_extractor = HtmlLinkExtractor()
        for itemclass_name, triplets in groupby(_item_template_pages,
                                                itemgetter(0)):
            page_extractors_pairs = map(itemgetter(1, 2), triplets)
            schema = items[itemclass_name]
            item_cls = SlybotItem.create_iblitem_class(schema)

            page_descriptor_pairs = []
            for page, template_extractors in page_extractors_pairs:
                item_descriptor = create_slybot_item_descriptor(schema)
                apply_extractors(item_descriptor, template_extractors,
                                 extractors)
                page_descriptor_pairs.append((page, item_descriptor))

            extractor = InstanceBasedLearningExtractor(page_descriptor_pairs)

            self.itemcls_info[itemclass_name] = {
                'class': item_cls,
                'descriptor': item_descriptor,
                'extractor': extractor,
            }

        # generate ibl extractor for links pages
        _links_pages = [dict_to_page(t, 'annotated_body')
                        for t in spec['templates']
                        if t.get('page_type') == 'links']
        _links_item_descriptor = create_slybot_item_descriptor({'fields': {}})
        self._links_ibl_extractor = InstanceBasedLearningExtractor(
            [(t, _links_item_descriptor) for t in _links_pages]) \
            if _links_pages else None

        self.build_url_filter(spec)

    def handle_html(self, response, seen=None):
        htmlpage = htmlpage_from_response(response)
        items, link_regions = self.extract_items(htmlpage)
        htmlpage.headers['n_items'] = len(items)
        try:
            response.meta['n_items'] = len(items)
        except AttributeError:
            pass # response not tied to any request
        for item in items:
            yield item
        for request in self._process_link_regions(htmlpage, link_regions):
            yield request

    def extract_items(self, htmlpage):
        """This method is also called from UI webservice to extract items"""
        items = []
        link_regions = []
        for item_cls_name, info in self.itemcls_info.items():
            item_descriptor = info['descriptor']
            extractor = info['extractor']
            extracted, _link_regions = self._do_extract_items_from(
                htmlpage,
                item_descriptor,
                extractor,
                item_cls_name,
            )
            items.extend(extracted)
            link_regions.extend(_link_regions)
        return items, link_regions

    def _do_extract_items_from(self, htmlpage, item_descriptor, extractor,
                               item_cls_name):
        extracted_data, template = extractor.extract(htmlpage)
        link_regions = []
        for ddict in extracted_data or []:
            link_regions.extend(ddict.pop("_links", []))
        processed_data = _process_extracted_data(extracted_data,
                                                 item_descriptor,
                                                 htmlpage)
        items = []
        item_cls = self.itemcls_info[item_cls_name]['class']
        for processed_attributes in processed_data:
            item = item_cls(processed_attributes)
            item['url'] = htmlpage.url
            item['_type'] = item_cls_name
            item['_template'] = str(template.id)
            items.append(item)

        return items, link_regions

    def build_url_filter(self, spec):
        """make a filter for links"""
        respect_nofollow = spec.get('respect_nofollow', True)
        patterns = spec.get('follow_patterns')
        if spec.get("links_to_follow") == "none":
            url_filterf = lambda x: False
        elif patterns:
            pattern = patterns[0] if len(patterns) == 1 \
                else "(?:%s)" % '|'.join(patterns)
            follow_pattern = re.compile(pattern)
            if respect_nofollow:
                url_filterf = lambda x: follow_pattern.search(x.url) \
                    and not x.nofollow
            else:
                url_filterf = lambda x: follow_pattern.search(x.url)
        elif respect_nofollow:
            url_filterf = lambda x: not x.nofollow
        else:
            url_filterf = bool
        # apply exclude patterns
        excludes = spec.get('exclude_patterns')
        if excludes:
            pattern = excludes[0] if len(excludes) == 1 \
                else "(?:%s)" % '|'.join(excludes)
            exclude_pattern = re.compile(pattern)
            self.url_filterf = lambda x: not exclude_pattern.search(x.url) \
                and url_filterf(x)
        else:
            self.url_filterf = url_filterf

    def _filter_link(self, link, seen):
        url = link.url
        if self.url_filterf(link):
            # filter out duplicate urls, later we should handle link text
            if url not in seen:
                seen.add(url)
                request = Request(url)
                if link.text:
                    request.meta['link_text'] = link.text
                return request

    def _process_link_regions(self, htmlpage, link_regions):
        """Process link regions if any, and generate requests"""
        if link_regions:
            for link_region in link_regions:
                htmlregion = HtmlPage(htmlpage.url, htmlpage.headers,
                                      link_region, encoding=htmlpage.encoding)
                for request in self._requests_to_follow(htmlregion):
                    yield request
        else:
            for request in self._requests_to_follow(htmlpage):
                yield request

    def _requests_to_follow(self, htmlpage):
        if self._links_ibl_extractor is not None:
            extracted = self._links_ibl_extractor.extract(htmlpage)[0]
            if extracted:
                extracted_regions = extracted[0].get('_links', [])
                seen = set()
                for region in extracted_regions:
                    htmlregion = HtmlPage(htmlpage.url, htmlpage.headers,
                                          region, encoding=htmlpage.encoding)
                    for request in self._request_to_follow_from_region(
                            htmlregion):
                        if request.url in seen:
                            continue
                        seen.add(request.url)
                        yield request
        else:
            for request in self._request_to_follow_from_region(htmlpage):
                yield request

    def _request_to_follow_from_region(self, htmlregion):
        seen = set()
        for link in self.html_link_extractor.links_to_follow(htmlregion):
            request = self._filter_link(link, seen)
            if request is not None:
                yield request

    def handle_xml(self, response, seen):
        _type = XML_APPLICATION_TYPE(response.headers.get('Content-Type', ''))
        _type = _type.groupdict()['type'] if _type else 'xml'
        try:
            link_extractor = create_linkextractor_from_specs({
                'type': _type, 'value': ''
            })
        except ValueError:
            link_extractor = SitemapLinkExtractor()
        for link in link_extractor.links_to_follow(response):
            request = self._filter_link(link, seen)
            if request:
                yield request
コード例 #10
0
ファイル: annotations.py プロジェクト: djangoresearch/portia
class Annotations(object):
    """
    Base Class for adding plugins to Portia Web and Slybot.
    """

    def setup_bot(self, settings, spec, items, extractors):
        """
        Perform any initialization needed for crawling using this plugin
        """
        _item_template_pages = sorted((
            [t.get('scrapes'), dict_to_page(t, 'annotated_body'),
             t.get('extractors', []), t.get('version', '0.12.0')]
            for t in spec['templates'] if t.get('page_type', 'item') == 'item'
        ), key=lambda x: x[0])
        self.item_classes = {}
        self.template_scrapes = {template.get('page_id'): template['scrapes']
                                 for template in spec.get('templates')}
        self.html_link_extractor = HtmlLinkExtractor()
        for schema_name, schema in items.items():
            if schema_name not in self.item_classes:
                if not schema.get('name'):
                    schema['name'] = schema_name
                item_cls = SlybotItem.create_iblitem_class(schema)
                self.item_classes[schema_name] = item_cls

        # Create descriptors and apply additional extractors to fields
        page_descriptor_pairs = []
        self.schema_descriptors = {}
        for default, template, template_extractors, v in _item_template_pages:
            descriptors = OrderedDict()
            for schema_name, schema in items.items():
                item_descriptor = create_slybot_item_descriptor(schema,
                                                                schema_name)
                apply_extractors(item_descriptor, template_extractors,
                                 extractors)
                descriptors[schema_name] = item_descriptor
            descriptor = descriptors.values() or [{}]
            descriptors['#default'] = descriptors.get(default, descriptor[0])
            self.schema_descriptors[template.page_id] = descriptors['#default']
            page_descriptor_pairs.append((template, descriptors, v))

        grouped = itertools.groupby(sorted(page_descriptor_pairs,
                                           key=operator.itemgetter(2)),
                                    lambda x: x[2] < '0.13.0')
        self.extractors = []
        for version, group in grouped:
            if version:
                self.extractors.append(
                    InstanceBasedLearningExtractor(
                        [(page, scrapes['#default'])
                         for page, scrapes, version in group]))
            else:
                self.extractors.append(SlybotIBLExtractor(list(group)))

        # generate ibl extractor for links pages
        _links_pages = [dict_to_page(t, 'annotated_body')
                        for t in spec['templates']
                        if t.get('page_type') == 'links']
        _links_item_descriptor = create_slybot_item_descriptor({'fields': {}})
        self._links_ibl_extractor = InstanceBasedLearningExtractor(
            [(t, _links_item_descriptor) for t in _links_pages]) \
            if _links_pages else None

        self.build_url_filter(spec)

    def handle_html(self, response, seen=None):
        htmlpage = htmlpage_from_response(response)
        items, link_regions = self.extract_items(htmlpage)
        htmlpage.headers['n_items'] = len(items)
        try:
            response.meta['n_items'] = len(items)
        except AttributeError:
            pass # response not tied to any request
        for item in items:
            yield item
        for request in self._process_link_regions(htmlpage, link_regions):
            yield request

    def extract_items(self, htmlpage):
        """This method is also called from UI webservice to extract items"""
        for extractor in self.extractors:
            items, links = self._do_extract_items_from(htmlpage, extractor)
            if items:
                return items, links
        return [], []

    def _do_extract_items_from(self, htmlpage, extractor):
        extracted_data, template = extractor.extract(htmlpage)
        link_regions = []
        for ddict in extracted_data or []:
            link_regions.extend(ddict.pop("_links", []))
        descriptor = None
        unprocessed = False
        if template is not None and hasattr(template, 'descriptor'):
            descriptor = template.descriptor()
            item_cls_name = descriptor.name if descriptor is not None else ''
        else:
            unprocessed = True
            try:
                descriptor = self.schema_descriptors[template.id]
                item_cls_name = self.template_scrapes[template.id]
            except AttributeError:
                descriptor = sorted(self.schema_descriptors.items())[0][1]
                item_cls_name = sorted(self.template_scrapes.items())[0][1]
        item_cls = self.item_classes.get(item_cls_name)
        items = []
        for processed_attributes in extracted_data or []:
            if processed_attributes.get('_type') in self.item_classes:
                _type = processed_attributes['_type']
                item = self.item_classes[_type](processed_attributes)
                item['_type'] = item.display_name()
            elif unprocessed:
                item = self._process_attributes(processed_attributes,
                                                descriptor, htmlpage)
                if item_cls:
                    item = item_cls(item)
            elif item_cls:
                item = item_cls(processed_attributes)
            else:
                item = dict(processed_attributes)
            item['url'] = htmlpage.url
            item['_template'] = str(template.id)
            item.setdefault('_type', item_cls_name)
            if not isinstance(item, SlybotItem):
                default_meta = {'type': 'text', 'required': False,
                                'vary': False}
                item_cls = SlybotItem.create_iblitem_class(
                    {'fields': {k: default_meta for k in item}}
                )
                item = item_cls(**item)
            items.append(item)

        return items, link_regions

    def _process_attributes(self, item, descriptor, htmlpage):
        new_item = {}
        attr_map = descriptor.attribute_map
        for field, value in item.items():
            if field.startswith('_sticky'):
                continue
            if field == 'variants':
                value = [self._process_attributes(v, descriptor, htmlpage)
                         for v in value]
            elif field in attr_map:
                value = [attr_map[field].adapt(v, htmlpage) for v in value]
            new_item[field] = value
        return new_item

    def build_url_filter(self, spec):
        """make a filter for links"""
        respect_nofollow = spec.get('respect_nofollow', True)

        if spec.get("links_to_follow") == "none":
            url_filterf = lambda x: False
        elif spec.get("links_to_follow") == "all":
            if respect_nofollow:
                url_filterf = lambda x: x.nofollow
            else:
                url_filterf = lambda x: True
        else: # patterns
            patterns = spec.get('follow_patterns')
            excludes = spec.get('exclude_patterns')
            pattern_fn = include_exclude_filter(patterns, excludes)

            if respect_nofollow:
                url_filterf = lambda x: not x.nofollow and pattern_fn(x.url)
            else:
                url_filterf = lambda x: pattern_fn(x.url)

        self.url_filterf = url_filterf


    def _filter_link(self, link, seen):
        url = link.url
        if self.url_filterf(link):
            # filter out duplicate urls, later we should handle link text
            if url not in seen:
                seen.add(url)
                request = Request(url)
                if link.text:
                    request.meta['link_text'] = link.text
                return request

    def _process_link_regions(self, htmlpage, link_regions):
        """Process link regions if any, and generate requests"""
        if link_regions:
            for link_region in link_regions:
                htmlregion = HtmlPage(htmlpage.url, htmlpage.headers,
                                      link_region, encoding=htmlpage.encoding)
                for request in self._requests_to_follow(htmlregion):
                    yield request
        else:
            for request in self._requests_to_follow(htmlpage):
                yield request

    def _requests_to_follow(self, htmlpage):
        if self._links_ibl_extractor is not None:
            extracted = self._links_ibl_extractor.extract(htmlpage)[0]
            if extracted:
                extracted_regions = extracted[0].get('_links', [])
                seen = set()
                for region in extracted_regions:
                    htmlregion = HtmlPage(htmlpage.url, htmlpage.headers,
                                          region, encoding=htmlpage.encoding)
                    for request in self._request_to_follow_from_region(
                            htmlregion):
                        if request.url in seen:
                            continue
                        seen.add(request.url)
                        yield request
        else:
            for request in self._request_to_follow_from_region(htmlpage):
                yield request

    def _request_to_follow_from_region(self, htmlregion):
        seen = set()
        for link in self.html_link_extractor.links_to_follow(htmlregion):
            request = self._filter_link(link, seen)
            if request is not None:
                yield request

    def handle_xml(self, response, seen):
        _type = XML_APPLICATION_TYPE(response.headers.get('Content-Type', ''))
        _type = _type.groupdict()['type'] if _type else 'xml'
        try:
            link_extractor = create_linkextractor_from_specs({
                'type': _type, 'value': ''
            })
        except ValueError:
            link_extractor = SitemapLinkExtractor()
        for link in link_extractor.links_to_follow(response):
            request = self._filter_link(link, seen)
            if request:
                yield request
コード例 #11
0
    def __init__(self, name, spec, item_schemas, all_extractors, **kw):
        super(IblSpider, self).__init__(name, **kw)

        self._item_template_pages = sorted((
            [t['scrapes'], dict_to_page(t, 'annotated_body'),
            t.get('extractors', [])] \
            for t in spec['templates'] if t.get('page_type', 'item') == 'item'
        ), key=lambda pair: pair[0])

        # generate ibl extractor for links pages
        _links_pages = [dict_to_page(t, 'annotated_body')
                for t in spec['templates'] if t.get('page_type') == 'links']
        _links_item_descriptor = create_slybot_item_descriptor({'fields': {}})
        self._links_ibl_extractor = InstanceBasedLearningExtractor([(t, _links_item_descriptor) for t in _links_pages]) \
                if _links_pages else None

        self._ipages = [page for _, page, _ in self._item_template_pages]

        self.start_urls = self.start_urls or spec.get('start_urls')
        if isinstance(self.start_urls, basestring):
            self.start_urls = self.start_urls.splitlines()

        self.html_link_extractor = HtmlLinkExtractor()
        self.rss_link_extractor = RssLinkExtractor()
        self.allowed_domains = spec.get('allowed_domains',
                                        self._get_allowed_domains(self._ipages))
        if not self.allowed_domains:
            self.allowed_domains = None
        self.build_url_filter(spec)

        self.itemcls_info = {}
        for itemclass_name, triplets in itertools.groupby(self._item_template_pages, operator.itemgetter(0)):
            page_extractors_pairs = map(operator.itemgetter(1, 2), triplets)
            schema = item_schemas[itemclass_name]
            item_cls = get_iblitem_class(schema)

            page_descriptor_pairs = []
            for page, template_extractors in page_extractors_pairs:
                item_descriptor = create_slybot_item_descriptor(schema)
                apply_extractors(item_descriptor, template_extractors, all_extractors)
                page_descriptor_pairs.append((page, item_descriptor))

            extractor = InstanceBasedLearningExtractor(page_descriptor_pairs)

            self.itemcls_info[itemclass_name] = {
                'class': item_cls,
                'descriptor': item_descriptor,
                'extractor': extractor,
            }

        self.login_requests = []
        self.form_requests = []
        for rdata in spec.get("init_requests", []):
            if rdata["type"] == "login":
                request = Request(url=rdata.pop("loginurl"), meta=rdata,
                                  callback=self.parse_login_page, dont_filter=True)
                self.login_requests.append(request)

            elif rdata["type"] == "form":
                self.generic_form = GenericForm(**kw)
                self.form_requests.append(self.get_generic_form_start_request(rdata))
コード例 #12
0
class Annotations(object):
    """
    Base Class for adding plugins to Portia Web and Slybot.
    """
    def setup_bot(self, settings, spec, items, extractors):
        """
        Perform any initialization needed for crawling using this plugin
        """
        _item_template_pages = sorted(([
            t['scrapes'],
            dict_to_page(t, 'annotated_body'),
            t.get('extractors', [])
        ] for t in spec['templates'] if t.get('page_type', 'item') == 'item'),
                                      key=lambda pair: pair[0])

        self.itemcls_info = {}
        self.html_link_extractor = HtmlLinkExtractor()
        self.rss_link_extractor = RssLinkExtractor()
        for itemclass_name, triplets in groupby(_item_template_pages,
                                                itemgetter(0)):
            page_extractors_pairs = map(itemgetter(1, 2), triplets)
            schema = items[itemclass_name]
            item_cls = SlybotItem.create_iblitem_class(schema)

            page_descriptor_pairs = []
            for page, template_extractors in page_extractors_pairs:
                item_descriptor = create_slybot_item_descriptor(schema)
                apply_extractors(item_descriptor, template_extractors,
                                 extractors)
                page_descriptor_pairs.append((page, item_descriptor))

            extractor = InstanceBasedLearningExtractor(page_descriptor_pairs)

            self.itemcls_info[itemclass_name] = {
                'class': item_cls,
                'descriptor': item_descriptor,
                'extractor': extractor,
            }

        # generate ibl extractor for links pages
        _links_pages = [
            dict_to_page(t, 'annotated_body') for t in spec['templates']
            if t.get('page_type') == 'links'
        ]
        _links_item_descriptor = create_slybot_item_descriptor({'fields': {}})
        self._links_ibl_extractor = InstanceBasedLearningExtractor(
            [(t, _links_item_descriptor) for t in _links_pages]) \
            if _links_pages else None

        self.build_url_filter(spec)

    def handle_html(self, response):
        htmlpage = htmlpage_from_response(response)
        items, link_regions = self.extract_items(htmlpage)
        for item in items:
            yield item
        for request in self._process_link_regions(htmlpage, link_regions):
            yield request

    def extract_items(self, htmlpage):
        """This method is also called from UI webservice to extract items"""
        items = []
        link_regions = []
        for item_cls_name, info in self.itemcls_info.iteritems():
            item_descriptor = info['descriptor']
            extractor = info['extractor']
            extracted, _link_regions = self._do_extract_items_from(
                htmlpage,
                item_descriptor,
                extractor,
                item_cls_name,
            )
            items.extend(extracted)
            link_regions.extend(_link_regions)
        return items, link_regions

    def _do_extract_items_from(self, htmlpage, item_descriptor, extractor,
                               item_cls_name):
        extracted_data, template = extractor.extract(htmlpage)
        link_regions = []
        for ddict in extracted_data or []:
            link_regions.extend(ddict.pop("_links", []))
        processed_data = _process_extracted_data(extracted_data,
                                                 item_descriptor, htmlpage)
        items = []
        item_cls = self.itemcls_info[item_cls_name]['class']
        for processed_attributes in processed_data:
            item = item_cls(processed_attributes)
            item['url'] = htmlpage.url
            item['_type'] = item_cls_name
            item['_template'] = str(template.id)
            items.append(item)

        return items, link_regions

    def build_url_filter(self, spec):
        """make a filter for links"""
        respect_nofollow = spec.get('respect_nofollow', True)
        patterns = spec.get('follow_patterns')
        if spec.get("links_to_follow") == "none":
            url_filterf = lambda x: False
        elif patterns:
            pattern = patterns[0] if len(patterns) == 1 \
                else "(?:%s)" % '|'.join(patterns)
            follow_pattern = re.compile(pattern)
            if respect_nofollow:
                url_filterf = lambda x: follow_pattern.search(x.url) \
                    and not x.nofollow
            else:
                url_filterf = lambda x: follow_pattern.search(x.url)
        elif respect_nofollow:
            url_filterf = lambda x: not x.nofollow
        else:
            url_filterf = bool
        # apply exclude patterns
        excludes = spec.get('exclude_patterns')
        if excludes:
            pattern = excludes[0] if len(excludes) == 1 \
                else "(?:%s)" % '|'.join(excludes)
            exclude_pattern = re.compile(pattern)
            self.url_filterf = lambda x: not exclude_pattern.search(x.url) \
                and url_filterf(x)
        else:
            self.url_filterf = url_filterf

    def _filter_link(self, link, seen):
        url = link.url
        if self.url_filterf(link):
            # filter out duplicate urls, later we should handle link text
            if url not in seen:
                seen.add(url)
                request = Request(url)
                if link.text:
                    request.meta['link_text'] = link.text
                return request

    def _process_link_regions(self, htmlpage, link_regions):
        """Process link regions if any, and generate requests"""
        if link_regions:
            for link_region in link_regions:
                htmlregion = HtmlPage(htmlpage.url,
                                      htmlpage.headers,
                                      link_region,
                                      encoding=htmlpage.encoding)
                for request in self._requests_to_follow(htmlregion):
                    yield request
        else:
            for request in self._requests_to_follow(htmlpage):
                yield request

    def _requests_to_follow(self, htmlpage):
        if self._links_ibl_extractor is not None:
            extracted = self._links_ibl_extractor.extract(htmlpage)[0]
            if extracted:
                extracted_regions = extracted[0].get('_links', [])
                seen = set()
                for region in extracted_regions:
                    htmlregion = HtmlPage(htmlpage.url,
                                          htmlpage.headers,
                                          region,
                                          encoding=htmlpage.encoding)
                    for request in self._request_to_follow_from_region(
                            htmlregion):
                        if request.url in seen:
                            continue
                        seen.add(request.url)
                        yield request
        else:
            for request in self._request_to_follow_from_region(htmlpage):
                yield request

    def _request_to_follow_from_region(self, htmlregion):
        seen = set()
        for link in self.html_link_extractor.links_to_follow(htmlregion):
            request = self._filter_link(link, seen)
            if request is not None:
                yield request

    def handle_rss(self, response, seen):
        for link in self.rss_link_extractor.links_to_follow(response):
            request = self._filter_link(link, seen)
            if request:
                yield request
コード例 #13
0
ファイル: annotations.py プロジェクト: NamiStudio/portia
    def setup_bot(self, settings, spec, items, extractors, logger):
        """
        Perform any initialization needed for crawling using this plugin
        """
        self.logger = logger
        templates = map(self._get_annotated_template, spec['templates'])

        _item_template_pages = sorted((
            [t.get('scrapes'), dict_to_page(t, 'annotated_body'),
             t.get('extractors', []), t.get('version', '0.12.0')]
            for t in templates if t.get('page_type', 'item') == 'item'
        ), key=lambda x: x[0])
        self.item_classes = {}
        self.template_scrapes = {template.get('page_id'): template['scrapes']
                                 for template in templates}
        if (settings.get('AUTO_PAGINATION') or
                spec.get('links_to_follow') == 'auto'):
            self.html_link_extractor = PaginationExtractor()
        else:
            self.html_link_extractor = HtmlLinkExtractor()
        for schema_name, schema in items.items():
            if schema_name not in self.item_classes:
                if not schema.get('name'):
                    schema['name'] = schema_name
                item_cls = SlybotItem.create_iblitem_class(schema)
                self.item_classes[schema_name] = item_cls

        # Create descriptors and apply additional extractors to fields
        page_descriptor_pairs = []
        self.schema_descriptors = {}
        for default, template, template_extractors, v in _item_template_pages:
            descriptors = OrderedDict()
            for schema_name, schema in items.items():
                item_descriptor = create_slybot_item_descriptor(schema,
                                                                schema_name)
                apply_extractors(item_descriptor, template_extractors,
                                 extractors)
                descriptors[schema_name] = item_descriptor
            descriptor = descriptors.values() or [{}]
            descriptors['#default'] = descriptors.get(default, descriptor[0])
            self.schema_descriptors[template.page_id] = descriptors['#default']
            page_descriptor_pairs.append((template, descriptors, v))
            add_extractors_to_descriptors(descriptors, extractors)

        grouped = itertools.groupby(sorted(page_descriptor_pairs,
                                           key=operator.itemgetter(2)),
                                    lambda x: x[2] < '0.13.0')
        self.extractors = []
        for version, group in grouped:
            if version:
                self.extractors.append(
                    InstanceBasedLearningExtractor(
                        [(page, scrapes['#default'])
                         for page, scrapes, version in group]))
            else:
                self.extractors.append(SlybotIBLExtractor(list(group)))

        # generate ibl extractor for links pages
        _links_pages = [dict_to_page(t, 'annotated_body')
                        for t in templates if t.get('page_type') == 'links']
        _links_item_descriptor = create_slybot_item_descriptor({'fields': {}})
        self._links_ibl_extractor = InstanceBasedLearningExtractor(
            [(t, _links_item_descriptor) for t in _links_pages]) \
            if _links_pages else None

        self.build_url_filter(spec)
        # Clustering
        self.template_names = [t.get('page_id') for t in spec['templates']]
        if settings.get('PAGE_CLUSTERING'):
            try:
                import page_clustering
                self.clustering = page_clustering.kmeans_from_samples(spec['templates'])
                self.logger.info("Clustering activated")
            except ImportError:
                self.clustering = None
                self.logger.warning(
                    "Clustering could not be used because it is not installed")
        else:
            self.clustering = None
コード例 #14
0
ファイル: annotations.py プロジェクト: userimack/portia
    def setup_bot(self, settings, spec, items, extractors):
        """
        Perform any initialization needed for crawling using this plugin
        """
        _item_template_pages = sorted(([
            t.get('scrapes'),
            dict_to_page(t, 'annotated_body'),
            t.get('extractors', []),
            t.get('version', '0.12.0')
        ] for t in spec['templates'] if t.get('page_type', 'item') == 'item'),
                                      key=lambda x: x[0])
        self.item_classes = {}
        self.template_scrapes = {
            template.get('page_id'): template['scrapes']
            for template in spec.get('templates')
        }
        self.html_link_extractor = HtmlLinkExtractor()
        for schema_name, schema in items.items():
            if schema_name not in self.item_classes:
                if not schema.get('name'):
                    schema['name'] = schema_name
                item_cls = SlybotItem.create_iblitem_class(schema)
                self.item_classes[schema_name] = item_cls

        # Create descriptors and apply additional extractors to fields
        page_descriptor_pairs = []
        self.schema_descriptors = {}
        for default, template, template_extractors, v in _item_template_pages:
            descriptors = OrderedDict()
            for schema_name, schema in items.items():
                item_descriptor = create_slybot_item_descriptor(
                    schema, schema_name)
                apply_extractors(item_descriptor, template_extractors,
                                 extractors)
                descriptors[schema_name] = item_descriptor
            descriptor = descriptors.values() or [{}]
            descriptors['#default'] = descriptors.get(default, descriptor[0])
            self.schema_descriptors[template.page_id] = descriptors['#default']
            page_descriptor_pairs.append((template, descriptors, v))
            add_extractors_to_descriptors(descriptors, extractors)

        grouped = itertools.groupby(
            sorted(page_descriptor_pairs, key=operator.itemgetter(2)),
            lambda x: x[2] < '0.13.0')
        self.extractors = []
        for version, group in grouped:
            if version:
                self.extractors.append(
                    InstanceBasedLearningExtractor([
                        (page, scrapes['#default'])
                        for page, scrapes, version in group
                    ]))
            else:
                self.extractors.append(SlybotIBLExtractor(list(group)))

        # generate ibl extractor for links pages
        _links_pages = [
            dict_to_page(t, 'annotated_body') for t in spec['templates']
            if t.get('page_type') == 'links'
        ]
        _links_item_descriptor = create_slybot_item_descriptor({'fields': {}})
        self._links_ibl_extractor = InstanceBasedLearningExtractor(
            [(t, _links_item_descriptor) for t in _links_pages]) \
            if _links_pages else None

        self.build_url_filter(spec)
コード例 #15
0
ファイル: annotations.py プロジェクト: hackoose/portia
class Annotations(object):
    """
    Base Class for adding plugins to Portia Web and Slybot.
    """

    def setup_bot(self, settings, spec, items, extractors):
        """
        Perform any initialization needed for crawling using this plugin
        """
        _item_template_pages = sorted(
            (
                [t["scrapes"], dict_to_page(t, "annotated_body"), t.get("extractors", [])]
                for t in spec["templates"]
                if t.get("page_type", "item") == "item"
            ),
            key=lambda pair: pair[0],
        )

        self.itemcls_info = {}
        self.html_link_extractor = HtmlLinkExtractor()
        self.rss_link_extractor = RssLinkExtractor()
        for itemclass_name, triplets in groupby(_item_template_pages, itemgetter(0)):
            page_extractors_pairs = map(itemgetter(1, 2), triplets)
            schema = items[itemclass_name]
            item_cls = SlybotItem.create_iblitem_class(schema)

            page_descriptor_pairs = []
            for page, template_extractors in page_extractors_pairs:
                item_descriptor = create_slybot_item_descriptor(schema)
                apply_extractors(item_descriptor, template_extractors, extractors)
                page_descriptor_pairs.append((page, item_descriptor))

            extractor = InstanceBasedLearningExtractor(page_descriptor_pairs)

            self.itemcls_info[itemclass_name] = {
                "class": item_cls,
                "descriptor": item_descriptor,
                "extractor": extractor,
            }

        # generate ibl extractor for links pages
        _links_pages = [dict_to_page(t, "annotated_body") for t in spec["templates"] if t.get("page_type") == "links"]
        _links_item_descriptor = create_slybot_item_descriptor({"fields": {}})
        self._links_ibl_extractor = (
            InstanceBasedLearningExtractor([(t, _links_item_descriptor) for t in _links_pages])
            if _links_pages
            else None
        )

        self.build_url_filter(spec)

    def handle_html(self, response):
        htmlpage = htmlpage_from_response(response)
        items, link_regions = self.extract_items(htmlpage)
        for item in items:
            yield item
        for request in self._process_link_regions(htmlpage, link_regions):
            yield request

    def extract_items(self, htmlpage):
        """This method is also called from UI webservice to extract items"""
        items = []
        link_regions = []
        for item_cls_name, info in self.itemcls_info.iteritems():
            item_descriptor = info["descriptor"]
            extractor = info["extractor"]
            extracted, _link_regions = self._do_extract_items_from(htmlpage, item_descriptor, extractor, item_cls_name)
            items.extend(extracted)
            link_regions.extend(_link_regions)
        return items, link_regions

    def _do_extract_items_from(self, htmlpage, item_descriptor, extractor, item_cls_name):
        extracted_data, template = extractor.extract(htmlpage)
        link_regions = []
        for ddict in extracted_data or []:
            link_regions.extend(ddict.pop("_links", []))
        processed_data = _process_extracted_data(extracted_data, item_descriptor, htmlpage)
        items = []
        item_cls = self.itemcls_info[item_cls_name]["class"]
        for processed_attributes in processed_data:
            item = item_cls(processed_attributes)
            item["url"] = htmlpage.url
            item["_type"] = item_cls_name
            item["_template"] = str(template.id)
            items.append(item)

        return items, link_regions

    def build_url_filter(self, spec):
        """make a filter for links"""
        respect_nofollow = spec.get("respect_nofollow", True)
        patterns = spec.get("follow_patterns")
        if spec.get("links_to_follow") == "none":
            url_filterf = lambda x: False
        elif patterns:
            pattern = patterns[0] if len(patterns) == 1 else "(?:%s)" % "|".join(patterns)
            follow_pattern = re.compile(pattern)
            if respect_nofollow:
                url_filterf = lambda x: follow_pattern.search(x.url) and not x.nofollow
            else:
                url_filterf = lambda x: follow_pattern.search(x.url)
        elif respect_nofollow:
            url_filterf = lambda x: not x.nofollow
        else:
            url_filterf = bool
        # apply exclude patterns
        excludes = spec.get("exclude_patterns")
        if excludes:
            pattern = excludes[0] if len(excludes) == 1 else "(?:%s)" % "|".join(excludes)
            exclude_pattern = re.compile(pattern)
            self.url_filterf = lambda x: not exclude_pattern.search(x.url) and url_filterf(x)
        else:
            self.url_filterf = url_filterf

    def _filter_link(self, link, seen):
        url = link.url
        if self.url_filterf(link):
            # filter out duplicate urls, later we should handle link text
            if url not in seen:
                seen.add(url)
                request = Request(url)
                if link.text:
                    request.meta["link_text"] = link.text
                return request

    def _process_link_regions(self, htmlpage, link_regions):
        """Process link regions if any, and generate requests"""
        if link_regions:
            for link_region in link_regions:
                htmlregion = HtmlPage(htmlpage.url, htmlpage.headers, link_region, encoding=htmlpage.encoding)
                for request in self._requests_to_follow(htmlregion):
                    yield request
        else:
            for request in self._requests_to_follow(htmlpage):
                yield request

    def _requests_to_follow(self, htmlpage):
        if self._links_ibl_extractor is not None:
            extracted = self._links_ibl_extractor.extract(htmlpage)[0]
            if extracted:
                extracted_regions = extracted[0].get("_links", [])
                seen = set()
                for region in extracted_regions:
                    htmlregion = HtmlPage(htmlpage.url, htmlpage.headers, region, encoding=htmlpage.encoding)
                    for request in self._request_to_follow_from_region(htmlregion):
                        if request.url in seen:
                            continue
                        seen.add(request.url)
                        yield request
        else:
            for request in self._request_to_follow_from_region(htmlpage):
                yield request

    def _request_to_follow_from_region(self, htmlregion):
        seen = set()
        for link in self.html_link_extractor.links_to_follow(htmlregion):
            request = self._filter_link(link, seen)
            if request is not None:
                yield request

    def handle_rss(self, response, seen):
        for link in self.rss_link_extractor.links_to_follow(response):
            request = self._filter_link(link, seen)
            if request:
                yield request