def testCurveToTransformation(self): rvs = (sm.RotationVector(), sm.EulerAnglesZYX(), sm.EulerRodriguez()) for r in rvs: bsp = bsplines.BSplinePose(4,r) # Build a random, valid transformation. T1 = bsp.curveValueToTransformation(numpy.random.random(6)) p = bsp.transformationToCurveValue(T1) T2 = bsp.curveValueToTransformation(p) self.assertMatricesEqual(T1, T2, 1e-9,"Checking the invertiblity of the transformation to curve values:")
def testInversePose2(self): rvs = (sm.RotationVector(), sm.EulerAnglesZYX(), sm.EulerRodriguez()) for r in rvs: bsp = bsplines.BSplinePose(4,r) # Create two random transformations. T_n_0 = bsp.curveValueToTransformation(numpy.random.random(6)) T_n_1 = bsp.curveValueToTransformation(numpy.random.random(6)) # Initialize the curve. bsp.initPoseSpline(0.0,1.0,T_n_0, T_n_1) for t in numpy.arange(0.0,1.0,0.1): T = bsp.transformation(t) invT,J,C = bsp.inverseTransformationAndJacobian(t) one = numpy.dot(T,invT) self.assertMatricesEqual(one,numpy.eye(4),1e-14,"T * inv(T)")
def testInverseOrientationJacobian(self): rvs = (sm.RotationVector(), sm.EulerAnglesZYX(), sm.EulerRodriguez()) for r in rvs: for order in range(2,7): bsp = bsplines.BSplinePose(order,r) T_n_0 = bsp.curveValueToTransformation(numpy.random.random(6)) T_n_1 = bsp.curveValueToTransformation(numpy.random.random(6)) # Initialize the curve. bsp.initPoseSpline(0.0,1.0,T_n_0, T_n_1) for t in numpy.linspace(bsp.t_min(), bsp.t_max(), 4): # Create a random homogeneous vector v = numpy.random.random(3) CJI = bsp.inverseOrientationAndJacobian(t); #print "TJI: %s" % (TJI) je = nd.Jacobian(lambda c: bsp.setLocalCoefficientVector(t,c) or numpy.dot(bsp.inverseOrientation(t), v)) estJ = je(bsp.localCoefficientVector(t)) JT = CJI[1] J = numpy.dot(sm.crossMx(numpy.dot(CJI[0],v)), JT) self.assertMatricesEqual(J, estJ, 1e-8,"C_n_0")