コード例 #1
0
 def testCurveToTransformation(self):
     rvs = (sm.RotationVector(), sm.EulerAnglesZYX(), sm.EulerRodriguez())
     for r in rvs:
         bsp = bsplines.BSplinePose(4,r)
         # Build a random, valid transformation.
         T1 = bsp.curveValueToTransformation(numpy.random.random(6))
         p = bsp.transformationToCurveValue(T1)
         T2 = bsp.curveValueToTransformation(p)
         self.assertMatricesEqual(T1, T2, 1e-9,"Checking the invertiblity of the transformation to curve values:")
コード例 #2
0
 def testInversePose2(self):
     rvs = (sm.RotationVector(), sm.EulerAnglesZYX(), sm.EulerRodriguez())
     for r in rvs:
         bsp = bsplines.BSplinePose(4,r)
         # Create two random transformations.
         T_n_0 = bsp.curveValueToTransformation(numpy.random.random(6))
         T_n_1 = bsp.curveValueToTransformation(numpy.random.random(6))
         
         # Initialize the curve.
         bsp.initPoseSpline(0.0,1.0,T_n_0, T_n_1)
         for t in numpy.arange(0.0,1.0,0.1):
             T = bsp.transformation(t)
             invT,J,C = bsp.inverseTransformationAndJacobian(t)
             one = numpy.dot(T,invT)
             self.assertMatricesEqual(one,numpy.eye(4),1e-14,"T * inv(T)")
コード例 #3
0
 def testInverseOrientationJacobian(self):
     rvs = (sm.RotationVector(), sm.EulerAnglesZYX(), sm.EulerRodriguez())
     for r in rvs:
         for order in range(2,7):
             bsp = bsplines.BSplinePose(order,r)
             T_n_0 = bsp.curveValueToTransformation(numpy.random.random(6))
             T_n_1 = bsp.curveValueToTransformation(numpy.random.random(6))
             
             # Initialize the curve.
             bsp.initPoseSpline(0.0,1.0,T_n_0, T_n_1)
             
             for t in numpy.linspace(bsp.t_min(), bsp.t_max(), 4):
                 # Create a random homogeneous vector
                 v = numpy.random.random(3)
                 CJI = bsp.inverseOrientationAndJacobian(t);
                 #print "TJI: %s" % (TJI)
                 je = nd.Jacobian(lambda c: bsp.setLocalCoefficientVector(t,c) or numpy.dot(bsp.inverseOrientation(t), v))
                 estJ = je(bsp.localCoefficientVector(t))
                 JT = CJI[1]
                 J = numpy.dot(sm.crossMx(numpy.dot(CJI[0],v)), JT)                    
                 self.assertMatricesEqual(J, estJ, 1e-8,"C_n_0")