コード例 #1
0
ファイル: test_data_array.py プロジェクト: nismod/smif
 def test_single_dim_order(self):
     spec = Spec(name='test',
                 dims=['technology_type'],
                 coords={
                     'technology_type':
                     ['water_meter', 'electricity_meter', 'other', 'aaa']
                 },
                 dtype='float')
     df = pd.DataFrame([
         {
             'technology_type': 'water_meter',
             'test': 5
         },
         {
             'technology_type': 'electricity_meter',
             'test': 6
         },
         {
             'technology_type': 'other',
             'test': 7
         },
         {
             'technology_type': 'aaa',
             'test': 8
         },
     ])
     da = DataArray(spec, numpy.array([5., 6., 7., 8.]))
     da_from_df = DataArray.from_df(spec, df)
     da_from_df_2 = DataArray.from_df(spec, df)
     assert da == da_from_df
     assert da == da_from_df_2
コード例 #2
0
ファイル: test_data_array.py プロジェクト: nismod/smif
    def test_multi_dim_order(self):
        spec = Spec(name='test',
                    coords={
                        'lad': ['c', 'a', 'b'],
                        'interval': [4, 2]
                    },
                    dims=['lad', 'interval'],
                    dtype='float')
        data = numpy.array(
            [
                # 4  2
                [1, 2],  # c
                [5, 6],  # a
                [9, 0]  # b
            ],
            dtype='float')
        da = DataArray(spec, data)

        df = pd.DataFrame([
            {
                'test': 6.0,
                'lad': 'a',
                'interval': 2
            },
            {
                'test': 0.0,
                'lad': 'b',
                'interval': 2
            },
            {
                'test': 2.0,
                'lad': 'c',
                'interval': 2
            },
            {
                'test': 5.0,
                'lad': 'a',
                'interval': 4
            },
            {
                'test': 9.0,
                'lad': 'b',
                'interval': 4
            },
            {
                'test': 1.0,
                'lad': 'c',
                'interval': 4
            },
        ]).set_index(['lad', 'interval'])
        da_from_df = DataArray.from_df(spec, df)
        assert da_from_df == da

        da_to_df = da.as_df().sort_index()
        df = df.sort_index()
        pd.testing.assert_frame_equal(da_to_df, df)
コード例 #3
0
ファイル: test_data_array.py プロジェクト: nismod/smif
 def test_from_multiindex(self):
     spec = Spec(name='test',
                 dims=['multi'],
                 coords={'multi': ['b', 'a', 'c']},
                 dtype='float')
     index = pd.MultiIndex.from_product([['b', 'a', 'c']], names=['multi'])
     df = pd.DataFrame({'test': [1, 2, 3]}, index=index)
     da_from_df = DataArray.from_df(spec, df)
     da = DataArray(spec, numpy.array([1, 2, 3]))
     assert da == da_from_df
コード例 #4
0
ファイル: test_data_array.py プロジェクト: nismod/smif
    def test_error_duplicate_rows_multi_index(self):
        spec = Spec(name='test',
                    dims=['a', 'b'],
                    coords={
                        'a': [1, 2],
                        'b': [3, 4]
                    },
                    dtype='int')
        df = pd.DataFrame([
            {
                'a': 1,
                'b': 3,
                'test': 0
            },
            {
                'a': 2,
                'b': 3,
                'test': 1
            },
            {
                'a': 1,
                'b': 4,
                'test': 2
            },
            {
                'a': 2,
                'b': 4,
                'test': 3
            },
            {
                'a': 2,
                'b': 4,
                'test': 4
            },
        ])

        with raises(SmifDataMismatchError) as ex:
            DataArray.from_df(spec, df)

        msg = "Data for 'test' contains duplicate values at [{'a': 2, 'b': 4}]"
        msg_alt = "Data for 'test' contains duplicate values at [{'b': 4, 'a': 2}]"
        assert msg in str(ex.value) or msg_alt in str(ex.value)
コード例 #5
0
ファイル: test_data_array.py プロジェクト: nismod/smif
    def test_scalar(self):
        # should handle zero-dimensional case (numpy array as scalar)
        data = numpy.array(2.0)
        spec = Spec(name='test', dims=[], coords={}, dtype='float')
        da = DataArray(spec, data)
        df = pd.DataFrame([{'test': 2.0}])
        da_from_df = DataArray.from_df(spec, df)
        assert da_from_df == da

        df_from_da = da.as_df()
        pd.testing.assert_frame_equal(df_from_da, df)
コード例 #6
0
ファイル: test_data_array.py プロジェクト: nismod/smif
    def test_df_round_trip_2d(self):
        spec = Spec.from_dict({
            'name': 'two_d',
            'dims': ['a', 'z'],
            'coords': {
                'a': ['q', 'p'],
                'z': ['a', 'c', 'b'],
            },
            'dtype': 'float'
        })
        da = DataArray(spec, numpy.array([
            [5., 6., 7.],
            [8., 9., 0.],
        ]))
        df = pd.DataFrame([
            {
                'z': 'a',
                'a': 'p',
                'two_d': 8.
            },
            {
                'z': 'c',
                'a': 'q',
                'two_d': 6.
            },
            {
                'z': 'a',
                'a': 'q',
                'two_d': 5.
            },
            {
                'z': 'b',
                'a': 'q',
                'two_d': 7.
            },
            {
                'z': 'b',
                'a': 'p',
                'two_d': 0.
            },
            {
                'z': 'c',
                'a': 'p',
                'two_d': 9.
            },
        ])
        df = df.set_index(spec.dims)
        df_from_da = da.as_df()

        da_from_df = DataArray.from_df(spec, df_from_da)
        assert_array_equal(da.data, da_from_df.data)
コード例 #7
0
ファイル: abstract_data_store.py プロジェクト: nismod/smif
    def dataframe_to_data_array(dataframe, spec, path):
        if spec.dims:
            data_array = DataArray.from_df(spec, dataframe)
        else:
            # zero-dimensional case (scalar)
            data = dataframe[spec.name]
            if data.shape != (1, ):
                msg = "Data for '{}' should contain a single value, instead got {} while " + \
                        "reading from {}"
                raise SmifDataMismatchError(
                    msg.format(spec.name, len(data), path))
            data_array = DataArray(spec, data.iloc[0])

        return data_array
コード例 #8
0
ファイル: test_data_array.py プロジェクト: nismod/smif
    def test_from_df_partial(self, spec):
        """Should create a DataArray that can handle missing data, returning nan/null
        """
        df = pd.DataFrame({
            'a': ['a1'],
            'b': ['b1'],
            'c': ['c2'],
            'test_data': [1]
        }).set_index(['a', 'b', 'c'])
        expected_data = numpy.full(spec.shape, numpy.nan)
        expected_data[0, 0, 1] = 1.0
        expected = DataArray(spec, expected_data)

        actual = DataArray.from_df(spec, df)

        assert_array_equal(actual.data, expected.data)
        assert actual == expected
コード例 #9
0
ファイル: test_data_array.py プロジェクト: nismod/smif
    def test_match_metadata(self):
        spec = Spec(name='test',
                    dims=['region'],
                    coords={'region': ['oxford']},
                    dtype='int64')

        # must have a column named the same as the spec.name
        df = pd.DataFrame([{
            'region': 'oxford',
            'other': 'else'
        }]).set_index(['region'])
        msg = "Data for 'test' expected a data column called 'test' and index names " + \
              "['region'], instead got data columns ['other'] and index names ['region']"
        with raises(SmifDataMismatchError) as ex:
            DataArray.from_df(spec, df)
        assert msg in str(ex.value)

        # may not be indexed, if columns are otherwise all okay
        df = pd.DataFrame([{'region': 'oxford', 'test': 1}])
        DataArray.from_df(spec, df)

        # must have an index level for each spec dimension
        df = pd.DataFrame([{'test': 3.14}])
        msg = "Data for 'test' expected a data column called 'test' and index names " + \
              "['region'], instead got data columns ['test'] and index names [None]"
        with raises(SmifDataMismatchError) as ex:
            DataArray.from_df(spec, df)
        assert msg in str(ex.value)

        # must not have dimension labels outside of the spec dimension
        df = pd.DataFrame([{
            'test': 3.14,
            'region': 'oxford'
        }, {
            'test': 3.14,
            'region': 'extra'
        }]).set_index(['region'])
        msg = "Data for 'test' contained unexpected values in the set of coordinates for " + \
              "dimension 'region': ['extra']"
        with raises(SmifDataMismatchError) as ex:
            DataArray.from_df(spec, df)
        assert msg in str(ex.value)
コード例 #10
0
ファイル: test_data_array.py プロジェクト: nismod/smif
    def test_to_from_df(self):
        df = pd.DataFrame([{
            'test': 3,
            'region': 'oxford',
            'interval': 1
        }]).set_index(['region', 'interval'])

        spec = Spec(name='test',
                    dims=['region', 'interval'],
                    coords={
                        'region': ['oxford'],
                        'interval': [1]
                    },
                    dtype='int64')

        da = DataArray(spec, numpy.array([[3.]], dtype='int64'))
        da_from_df = DataArray.from_df(spec, df)
        assert da_from_df == da

        da_to_df = da.as_df()
        pd.testing.assert_frame_equal(da_to_df, df)
コード例 #11
0
ファイル: test_data_array.py プロジェクト: nismod/smif
    def test_df_round_trip(self):
        spec = Spec.from_dict({
            'name': 'multi_savings',
            'description': 'The savings from various technologies',
            'dims': ['technology_type'],
            'coords': {
                'technology_type':
                ['water_meter', 'electricity_meter', 'other', 'aaa']
            },
            'dtype': 'float',
            'abs_range': (0, 100),
            'exp_range': (3, 10),
            'unit': '%'
        })
        da = DataArray(spec, numpy.array([5., 6., 7., 8.]))
        df = pd.DataFrame([
            {
                'technology_type': 'water_meter',
                'multi_savings': 5.
            },
            {
                'technology_type': 'electricity_meter',
                'multi_savings': 6.
            },
            {
                'technology_type': 'other',
                'multi_savings': 7.
            },
            {
                'technology_type': 'aaa',
                'multi_savings': 8.
            },
        ])
        df = df.set_index(spec.dims)
        df_from_da = da.as_df()

        da_from_df = DataArray.from_df(spec, df_from_da)
        assert_array_equal(da.data, da_from_df.data)
コード例 #12
0
ファイル: conftest.py プロジェクト: nismod/smif
def get_multidimensional_param():
    spec = Spec.from_dict({
        'name': 'ss_t_base_heating',
        'description': 'Industrial base temperature',
        'default': '../energy_demand/parameters/ss_t_base_heating.csv',
        'unit': '',
        'dims': ['interpolation_params', 'end_yr'],
        'coords': {
            'interpolation_params': ['diffusion_choice', 'value_ey'],
            'end_yr': [2030, 2050]
        },
        'dtype': 'float'
    })
    dataframe = pd.DataFrame([
        {
            'interpolation_params': 'diffusion_choice',
            'end_yr': 2030,
            'ss_t_base_heating': 0
        },
        {
            'interpolation_params': 'diffusion_choice',
            'end_yr': 2050,
            'ss_t_base_heating': 0
        },
        {
            'interpolation_params': 'value_ey',
            'end_yr': 2030,
            'ss_t_base_heating': 15.5
        },
        {
            'interpolation_params': 'value_ey',
            'end_yr': 2050,
            'ss_t_base_heating': 15.5
        },
    ]).set_index(['interpolation_params', 'end_yr'])
    return DataArray.from_df(spec, dataframe)
コード例 #13
0
ファイル: run.py プロジェクト: nismod/nismod2
 def _df_to_ndarray(self, output_name, dataframe):
     spec = self.outputs[output_name]
     dataframe.set_index(spec.dims, inplace=True)
     dataarray = DataArray.from_df(spec, dataframe)
     return dataarray.data
コード例 #14
0
ファイル: test_data_array.py プロジェクト: nismod/smif
 def test_from_df(self, small_da, small_da_df):
     """Should create a DataArray from a pandas.DataFrame
     """
     actual = DataArray.from_df(small_da.spec, small_da_df)
     assert actual == small_da
コード例 #15
0
def main():
    # Read connection details
    if 'NISMOD_API_USER' in os.environ and 'NISMOD_API_PASSWORD' in os.environ:
        username = os.environ['NISMOD_API_USER']
        password = os.environ['NISMOD_API_PASSWORD']
    else:
        parser = configparser.ConfigParser()
        parser.read(os.path.join(os.path.dirname(__file__), 'dbconfig.ini'))
        username = parser['nismod-api']['user']
        password = parser['nismod-api']['password']

    auth = (username, password)

    try:
        os.mkdir(CACHE_PATH)
    except FileExistsError:
        pass

    # Population
    get_population(auth)
    process_oa_population()
    process_oa_to_lad_population()

    # Read
    oa_pop = pandas.read_csv(os.path.join(CACHE_PATH, 'oa_population.csv'))
    lad_pop = pandas.read_csv(os.path.join(CACHE_PATH, 'lad_population.csv'))

    # to DataArray
    years = list(range(POPULATION_MIN_YEAR, POPULATION_MAX_YEAR + 1))
    oas = list(oa_pop.oa.unique())
    oa_spec = Spec(name='population',
                   dims=['timestep', 'oa'],
                   coords={
                       'oa': oas,
                       'timestep': years
                   },
                   dtype='int')

    lads = list(lad_pop.lad_gb_2016.unique())
    lad_spec = Spec(name='population',
                    dims=['timestep', 'lad_gb_2016'],
                    coords={
                        'lad_gb_2016': lads,
                        'timestep': years
                    },
                    dtype='int')

    # Write to CSV and Parquet stores
    text_store = CSVDataStore(STORE_BASE_PATH)
    binary_store = ParquetDataStore(STORE_BASE_PATH)

    lad_key = 'population_nismod_db.v5_lad16'
    lad_pop_da = DataArray.from_df(lad_spec, lad_pop.set_index(lad_spec.dims))
    text_store.write_scenario_variant_data('{}.csv'.format(lad_key),
                                           lad_pop_da)
    binary_store.write_scenario_variant_data('{}.parquet'.format(lad_key),
                                             lad_pop_da)

    oa_key = 'population_nismod_db.v5_oa'
    oa_pop_da = DataArray.from_df(oa_spec, oa_pop.set_index(oa_spec.dims))
    text_store.write_scenario_variant_data('{}.csv'.format(oa_key), oa_pop_da)
    binary_store.write_scenario_variant_data('{}.parquet'.format(oa_key),
                                             oa_pop_da)