コード例 #1
0
    def transmission_integrand_for_energy_conservation_test(self, frequency, eps_1, eps_2, mu_t, mu_i, dphi):
        """function relevant to compute energy conservation. See p87 in Tsang_tomeIII.
"""
        n_2 = np.sqrt(eps_2)
        n_1 = np.sqrt(eps_1)

        mu_i = np.atleast_1d(mu_i)[np.newaxis, np.newaxis, :]
        mu_t = np.atleast_1d(mu_t)[np.newaxis, :, np.newaxis]
        dphi = np.atleast_1d(dphi)[:, np.newaxis, np.newaxis]

        sin_i = np.sqrt(1 - mu_i**2)
        sin_t = np.sqrt(1 - mu_t**2)

        cos_phi = np.cos(dphi)
        sin_phi = np.sin(dphi)

        ki = vector3.from_xyz(sin_i, 0, -mu_i)
        kt = vector3.from_xyz(sin_t * cos_phi, sin_t * sin_phi, -mu_t)

        # compute the local transmission Fresnel coefficient
        ktd = n_1.real * ki - n_2.real * kt   # Eq 2.1.87

        n = ktd / (np.sign(ktd.z) * ktd.norm)  # Eq 2.1.128

        mu_local = -vector3.dot(n, ki)

        Rv, Rh, _ = fresnel_coefficients(eps_1, eps_2, mu_local)
 
        # define polarizations
        ht = vector3.from_xyz(-sin_phi, cos_phi, 0)
        vt = vector3.from_xyz(-mu_t * cos_phi, -mu_t * sin_phi, -sin_t)

        #print(vector3.cross(vt, ht), kt)

        hi = vector3.from_xyz(0, 1, 0)
        vi = vector3.from_xyz(-mu_i, 0, -sin_i)

        #print(vector3.cross(vi, hi), ki)

        ht_ki = vector3.dot(ht, ki)
        vt_ki = vector3.dot(vt, ki)

        hi_kt = vector3.dot(hi, kt)
        vi_kt = vector3.dot(vi, kt)

        Tv =  (hi_kt**2) * (1-abs2(Rh)) + (vi_kt**2) * (1-abs2(Rv))
        Th =  (vi_kt**2) * (1-abs2(Rh)) + (hi_kt**2) * (1-abs2(Rv))

        coef = 1/(2 * np.pi * self.mean_square_slope) * eps_2 * ktd.norm2 * vector3.dot(n, kt) * vector3.dot(n, ki)  \
                / (mu_i * vector3.cross(ki, kt).norm2 * ktd.z**4 ) * \
                np.exp(-(ktd.x**2 + ktd.y**2) / (2 * ktd.z**2 * self.mean_square_slope))   # Eq. 2.1.130   NB: k1^2 -> eps_2

        #return Tv, Th  #
        return coef*Tv, coef*Th
コード例 #2
0
    def reflection_integrand_for_energy_conservation_test(self, frequency, eps_1, eps_2, mu_s, mu_i, dphi):
        """function relevant to compute energy conservation. See p87 in Tsang_tomeIII.
"""
        mu_i = np.atleast_1d(mu_i)[np.newaxis, np.newaxis, :]
        mu_s = np.atleast_1d(mu_s)[np.newaxis, :, np.newaxis]
        dphi = np.atleast_1d(dphi)[:, np.newaxis, np.newaxis]

        sin_i = np.sqrt(1 - mu_i**2)
        sin_s = np.sqrt(1 - mu_s**2)

        cos_phi = np.cos(dphi)
        sin_phi = np.sin(dphi)

        ki = vector3.from_xyz(sin_i, 0, -mu_i)
        ks = vector3.from_xyz(sin_s * cos_phi, sin_s * sin_phi, mu_s)

        # compute the local reflection Fresnel coefficient
        kd = ki - ks   # in principe: *sqrt(eps_1), but in the following it appears everywhere as a ratio

        n = kd / (np.sign(kd.z) * kd.norm)  # EQ 2.1.223 #equivalent to np.vector3(kd_x / kd_z, kd_y / kd_z, 1)

        mu_local = -vector3.dot(n, ki)

        Rv, Rh, _ = fresnel_coefficients(eps_1, eps_2, mu_local)
 
        # define polarizations
        hs = vector3.from_xyz(-sin_phi, cos_phi, 0)
        vs = vector3.from_xyz(mu_s * cos_phi, mu_s * sin_phi, -sin_s)

        #print(vector3.cross(vs, hs), ks)

        hi = vector3.from_xyz(0, 1, 0)
        vi = vector3.from_xyz(-mu_i, 0, -sin_i)

        #print(vector3.cross(vi, hi), ki)

        hs_ki = vector3.dot(hs, ki)
        vs_ki = vector3.dot(vs, ki)

        hi_ks = vector3.dot(hi, ks)
        vi_ks = vector3.dot(vi, ks)

        coef = 1/(2 * np.pi * self.mean_square_slope) * kd.norm2**2 / (4 * mu_i * vector3.cross(ki, ks).norm2 * kd.z**4) * \
                         np.exp( - (kd.x**2 + kd.y**2)/ (2 * kd.z**2 * self.mean_square_slope))  # Eq. 2.1.124 

        return coef * (hi_ks**2 * abs2(Rh) + vi_ks**2 * abs2(Rv)), \
               coef * (vi_ks**2 * abs2(Rh) + hi_ks**2 * abs2(Rv)) 
コード例 #3
0
    def diffuse_reflection_matrix(self, frequency, eps_1, eps_2, mu_s, mu_i, dphi, npol):
        """compute the reflection coefficients for an array of incident, scattered and azimuth angles 
           in medium 1. Medium 2 is where the beam is transmitted.

        :param eps_1: permittivity of the medium where the incident beam is propagating.
        :param eps_2: permittivity of the other medium
        :param mu1: array of cosine of incident angles
        :param npol: number of polarization

        :return: the reflection matrix
"""
        mu_i = np.atleast_1d(mu_i)[np.newaxis, np.newaxis, :]
        mu_s = np.atleast_1d(mu_s)[np.newaxis, :, np.newaxis]
        dphi = np.atleast_1d(dphi)[:, np.newaxis, np.newaxis]

        sin_i = np.sqrt(1 - mu_i**2)
        sin_s = np.sqrt(1 - mu_s**2)

        cos_phi = np.cos(dphi)
        sin_phi = np.sin(dphi)

        ki = vector3.from_xyz(sin_i, 0, -mu_i)
        ks = vector3.from_xyz(sin_s * cos_phi, sin_s * sin_phi, mu_s)

        # compute the local reflection Fresnel coefficient
        kd = ki - ks   # in principe: *sqrt(eps_1), but in the following it appears everywhere as a ratio

        n = kd / (np.sign(kd.z) * kd.norm)  # EQ 2.1.223 #equivalent to np.vector3(kd_x / kd_z, kd_y / kd_z, 1)

        mu_local = -vector3.dot(n, ki)

        Rv, Rh, _ = fresnel_coefficients(eps_1, eps_2, mu_local)
 
        # define polarizations
        hs = vector3.from_xyz(-sin_phi, cos_phi, 0)
        vs = vector3.from_xyz(mu_s * cos_phi, mu_s * sin_phi, -sin_s)

        hi = vector3.from_xyz(0, 1, 0)
        vi = vector3.from_xyz(-mu_i, 0, -sin_i)

        # compute the dot products
        hs_ki = vector3.dot(hs, ki)
        vs_ki = vector3.dot(vs, ki)

        hi_ks = vector3.dot(hi, ks)
        vi_ks = vector3.dot(vi, ks)

        fvv = abs2( hs_ki * hi_ks * Rh + vs_ki* vi_ks * Rv)   # Eqs 2.1.122 in Tsang_tomeIII
        fhh = abs2( vs_ki * vi_ks * Rh + hs_ki* hi_ks * Rv)

        fhv = abs2( vs_ki * hi_ks * Rh - hs_ki* vi_ks * Rv)
        fvh = abs2( hs_ki * vi_ks * Rh + vs_ki* hi_ks * Rv)
        
        reflection_coefficients = smrt_matrix.zeros((npol, npol, dphi.shape[0], mu_s.shape[1], mu_i.shape[2]))
        reflection_coefficients[0, 0] = fvv
        reflection_coefficients[0, 1] = fvh
        reflection_coefficients[1, 0] = fhv
        reflection_coefficients[1, 1] = fhh

        smrt_norm = 1 / (4 * np.pi)  #  divide by 4*pi because this is the norm for SMRT

        coef = smrt_norm / (2 * self.mean_square_slope) / mu_i * kd.norm2**2 / (vector3.cross(ki, ks).norm2**2 * kd.z**4) * \
                         np.exp( - (kd.x**2 + kd.y**2)/ (2 * kd.z**2 * self.mean_square_slope))  # Eq. 2.1.124 

        if self.shadow_correction:

            backward = dphi == np.pi
            higher_thetas = mu_s <= mu_i
            zero_i = backward & higher_thetas
            zero_s = backward & ~higher_thetas

            s = 1 / (1 + zero_i * shadow_function(self.mean_square_slope, mu_i/sin_i) + zero_s * shadow_function(self.mean_square_slope, mu_s/sin_s))
            coef *= s

        return reflection_coefficients * coef
コード例 #4
0
    def diffuse_transmission_matrix(self, frequency, eps_1, eps_2, mu_t, mu_i, dphi, npol):
        """compute the transmission coefficients for an array of incident, scattered and azimuth angles 
           in medium 1. Medium 2 is where the beam is transmitted.

        :param eps_1: permittivity of the medium where the incident beam is propagating.
        :param eps_2: permittivity of the other medium
        :param mu_i: array of cosine of incident angles
        :param mu_t: array of cosine of transmitted wave angles
        :param npol: number of polarization

        :return: the transmission matrix
"""
        n_2 = np.sqrt(eps_2)
        n_1 = np.sqrt(eps_1)

        eta1_eta = n_1 / n_2  # eta1 is the impedance in medium 2 and eta in medium 1. Impedance is sqrt(permeability/permittivity)

        mu_i = np.atleast_1d(mu_i)[np.newaxis, np.newaxis, :]
        mu_t = np.atleast_1d(mu_t)[np.newaxis, :, np.newaxis]
        dphi = np.atleast_1d(dphi)[:, np.newaxis, np.newaxis]

        sin_i = np.sqrt(1 - mu_i**2)
        sin_t = np.sqrt(1 - mu_t**2)

        cos_phi = np.cos(dphi)
        sin_phi = np.sin(dphi)

        ki = vector3.from_xyz(sin_i, 0, -mu_i)
        kt = vector3.from_xyz(sin_t * cos_phi, sin_t * sin_phi, -mu_t)

        # compute the local transmission Fresnel coefficient
        ktd = n_1.real * ki - n_2.real * kt   # Eq 2.1.87

        n = ktd / (np.sign(ktd.z) * ktd.norm)  # Eq 2.1.128

        mu_local = -vector3.dot(n, ki)

        Rv, Rh, _ = fresnel_coefficients(eps_1, eps_2, mu_local)

        n_kt = vector3.dot(n, kt)
        n_kt[mu_local < 0] = 0
 
        # define polarizations
        ht = vector3.from_xyz(-sin_phi, cos_phi, 0)
        vt = vector3.from_xyz(-mu_t * cos_phi, -mu_t * sin_phi, -sin_t)

        hi = vector3.from_xyz(0, 1, 0)
        vi = vector3.from_xyz(-mu_i, 0, -sin_i)

        # compute the cosines

        ht_ki = vector3.dot(ht, ki)
        vt_ki = vector3.dot(vt, ki)

        hi_kt = vector3.dot(hi, kt)
        vi_kt = vector3.dot(vi, kt)

        Wvv = abs2( ht_ki * hi_kt * (1 + Rh) + vt_ki * vi_kt * (1 + Rv) * eta1_eta)   # Eqs 2.1.130 in Tsang_tomeIII
        Whh = abs2( vt_ki * vi_kt * (1 + Rh) + ht_ki * hi_kt * (1 + Rv) * eta1_eta)

        Whv = abs2(-vt_ki * hi_kt * (1 + Rh) + ht_ki * vi_kt * (1 + Rv) * eta1_eta)
        Wvh = abs2( ht_ki * vi_kt * (1 + Rh) - vt_ki * hi_kt * (1 + Rv) * eta1_eta)
        
        transmission_coefficients = smrt_matrix.zeros((npol, npol, dphi.shape[0], mu_t.shape[1], mu_i.shape[2]))

        transmission_coefficients[0, 0] = Wvv
        transmission_coefficients[0, 1] = Wvh
        transmission_coefficients[1, 0] = Whv
        transmission_coefficients[1, 1] = Whh

        smrt_norm = 1 / (4 * np.pi)   # SMRT requires scattering coefficient / 4 * pi

        coef = smrt_norm * 2 * eps_2 / (eta1_eta * self.mean_square_slope) / mu_i * \
                ktd.norm2 * n_kt**2 / (vector3.cross(ki, kt).norm2**2 * ktd.z**4) * \
                np.exp(-(ktd.x**2 + ktd.y**2) / (2 * ktd.z**2 * self.mean_square_slope))   # Eq. 2.1.130   NB: k1^2 -> eps_2

        if self.shadow_correction:
            s = 1 / (1 + shadow_function(self.mean_square_slope, mu_i/sin_i) + shadow_function(self.mean_square_slope, mu_t/sin_t))
            coef *= s

        return transmission_coefficients * coef.real
コード例 #5
0
    def diffuse_reflection_matrix(self, frequency, eps_1, eps_2, mu_s, mu_i,
                                  dphi, npol):
        """compute the reflection coefficients for an array of incident, scattered and azimuth angles 
           in medium 1. Medium 2 is where the beam is transmitted.

        :param eps_1: permittivity of the medium where the incident beam is propagating.
        :param eps_2: permittivity of the other medium
        :param mu1: array of cosine of incident angles
        :param npol: number of polarization

        :return: the reflection matrix
"""
        mu_i = np.atleast_1d(self.clip_mu(mu_i))[np.newaxis, np.newaxis, :]
        mu_s = np.atleast_1d(self.clip_mu(mu_s))[np.newaxis, :, np.newaxis]
        dphi = np.atleast_1d(dphi)[:, np.newaxis, np.newaxis]

        sin_i = np.sqrt(1 - mu_i**2)
        sin_s = np.sqrt(1 - mu_s**2)

        cos_phi = np.cos(dphi)
        sin_phi = np.sin(dphi)

        ki = vector3.from_xyz(sin_i, 0, -mu_i)
        ks = vector3.from_xyz(sin_s * cos_phi, sin_s * sin_phi, mu_s)

        # compute the local reflection Fresnel coefficient
        kd = ki - ks  # in principe: *sqrt(eps_1), but in the following it appears everywhere as a ratio

        n = kd / (
            np.sign(kd.z) * kd.norm
        )  # EQ 2.1.123 #equivalent to np.vector3(kd_x / kd_z, kd_y / kd_z, 1)

        mu_local = -vector3.dot(n, ki)
        assert (np.all(mu_local >= 0))
        assert (np.all(mu_local <= 1.0001))  # compare with some tolerance
        Rv, Rh, _ = fresnel_coefficients(eps_1, eps_2, self.clip_mu(mu_local))

        # define polarizations
        hs = vector3.from_xyz(-sin_phi, cos_phi, 0)
        vs = vector3.from_xyz(mu_s * cos_phi, mu_s * sin_phi, -sin_s)

        hi = vector3.from_xyz(0, 1, 0)
        vi = vector3.from_xyz(-mu_i, 0, -sin_i)

        # compute the dot products
        cross_ki_ks_norm = vector3.cross(ki, ks).norm
        colinear = cross_ki_ks_norm < 1e-4
        # avoid warning due to divide error, the colinear case is solved independantly:
        cross_ki_ks_norm[colinear] = 1

        hs_ki = vector3.dot(hs, ki) / cross_ki_ks_norm
        hs_ki[colinear] = -1
        vs_ki = vector3.dot(vs, ki) / cross_ki_ks_norm
        vs_ki[colinear] = 0

        hi_ks = vector3.dot(hi, ks) / cross_ki_ks_norm
        hi_ks[colinear] = 1

        vi_ks = vector3.dot(vi, ks) / cross_ki_ks_norm
        vi_ks[colinear] = 0

        fvv = abs2(hs_ki * hi_ks * Rh +
                   vs_ki * vi_ks * Rv)  # Eqs 2.1.122 in Tsang_tomeIII
        fhh = abs2(vs_ki * vi_ks * Rh + hs_ki * hi_ks * Rv)

        fhv = abs2(vs_ki * hi_ks * Rh - hs_ki * vi_ks * Rv)
        fvh = abs2(hs_ki * vi_ks * Rh - vs_ki * hi_ks * Rv)

        reflection_coefficients = smrt_matrix.zeros(
            (npol, npol, dphi.shape[0], mu_s.shape[1], mu_i.shape[2]))
        reflection_coefficients[0, 0] = fvv
        reflection_coefficients[0, 1] = fvh
        reflection_coefficients[1, 0] = fhv
        reflection_coefficients[1, 1] = fhh

        smrt_norm = 1 / (4 * np.pi
                         )  # divide by 4*pi because this is the norm for SMRT

        coef = smrt_norm / (2 * self.mean_square_slope) / mu_i * kd.norm2**2 / kd.z**4 * \
            np.exp(-(kd.x**2 + kd.y**2) / (2 * kd.z**2 * self.mean_square_slope))  # Eq. 2.1.124

        if self.shadow_correction:
            backward = dphi == np.pi
            higher_thetas = mu_s <= mu_i
            zero_i = backward & higher_thetas
            zero_s = backward & ~higher_thetas
            # this hack to avoid division-by-zero is safe, because the shadow_function is only important for large angles
            sin_i[sin_i < 1e-3] = 1e-3
            sin_s[sin_s < 1e-3] = 1e-3

            s = 1 / (1 + (~zero_i) *
                     shadow_function(self.mean_square_slope, mu_i / sin_i) +
                     (~zero_s) *
                     shadow_function(self.mean_square_slope, mu_s / sin_s))
            coef *= s

        return reflection_coefficients * coef
コード例 #6
0
    def transmission_integrand_for_energy_conservation_test(
            self, frequency, eps_1, eps_2, mu_t, mu_i, dphi):
        """function relevant to compute energy conservation. See p87 in Tsang_tomeIII.
"""
        n_2 = np.sqrt(eps_2)
        n_1 = np.sqrt(eps_1)

        mu_i = np.atleast_1d(self.clip_mu(mu_i))[np.newaxis, np.newaxis, :]
        mu_t = np.atleast_1d(self.clip_mu(mu_t))[np.newaxis, :, np.newaxis]
        dphi = np.atleast_1d(dphi)[:, np.newaxis, np.newaxis]

        sin_i = np.sqrt(1 - mu_i**2)
        sin_t = np.sqrt(1 - mu_t**2)

        cos_phi = np.cos(dphi)
        sin_phi = np.sin(dphi)

        ki = vector3.from_xyz(sin_i, 0, -mu_i)
        kt = vector3.from_xyz(sin_t * cos_phi, sin_t * sin_phi, -mu_t)

        # compute the local transmission Fresnel coefficient
        ktd = n_1.real * ki - n_2.real * kt  # Eq 2.1.87

        n = ktd / (np.sign(ktd.z) * ktd.norm)  # Eq 2.1.128

        # compute Fresnel coefficients at stationary point
        n_kt = -vector3.dot(n, kt)
        n_ki = -vector3.dot(n, ki)

        Rh = (n_1.real * n_ki - n_2.real * n_kt) / (
            n_1.real * n_ki + n_2.real * n_kt)  # Eq. 2.1.132a
        Rv = (n_2.real * n_ki - n_1.real * n_kt) / (
            n_2.real * n_ki + n_1.real * n_kt)  # Eq. 2.1.132b

        no_compatible_slopes = (n_kt < 0) | (n_ki < 0)

        Rh[no_compatible_slopes] = -1
        Rv[no_compatible_slopes] = -1

        # define polarizations

        hi = vector3.from_xyz(0, 1, 0)
        vi = vector3.from_xyz(-mu_i, 0, -sin_i)

        hi_kt = vector3.dot(hi, kt)
        vi_kt = vector3.dot(vi, kt)

        Tv = (hi_kt**2) * (1 - abs2(Rh)) + (vi_kt**2) * (1 - abs2(Rv))
        Th = (vi_kt**2) * (1 - abs2(Rh)) + (hi_kt**2) * (1 - abs2(Rv))

        coef = eps_2 / (2 * np.pi * self.mean_square_slope) * ktd.norm2 * n_kt * n_ki  \
            / (mu_i * vector3.cross(ki, kt).norm2 * ktd.z**4) * \
            np.exp(- (ktd.x**2 + ktd.y**2) / (2 * ktd.z**2 * self.mean_square_slope))   # Eq. 2.1.130 NB: k1^2 -> eps_2

        if self.shadow_correction:
            sin_i[sin_i < 1e-3] = 1e-3
            sin_t[sin_t < 1e-3] = 1e-3
            s = 1 / (1 + shadow_function(self.mean_square_slope, mu_i / sin_i)
                     + shadow_function(self.mean_square_slope, mu_t / sin_t))
            coef *= s

        return coef * Tv, coef * Th
コード例 #7
0
    def diffuse_transmission_matrix(self, frequency, eps_1, eps_2, mu_t, mu_i,
                                    dphi, npol):
        """compute the transmission coefficients for an array of incident, scattered and azimuth angles
           in medium 1. Medium 2 is where the beam is transmitted.

        :param eps_1: permittivity of the medium where the incident beam is propagating.
        :param eps_2: permittivity of the other medium
        :param mu_i: array of cosine of incident angles
        :param mu_t: array of cosine of transmitted wave angles
        :param npol: number of polarization

        :return: the transmission matrix
"""
        n_2 = np.sqrt(eps_2)
        n_1 = np.sqrt(eps_1)

        eta1_eta = n_1 / n_2  # eta1 is the impedance in medium 2 and eta in medium 1. Impedance is sqrt(permeability/permittivity)

        if abs(eta1_eta - 1) < 1e-6:
            raise NotImplementedError(
                "the case of successive layers with identical index (%g) is not implemented"
                % n_2)
            return 1 / (
                4 * np.pi
            )  # return the identity matrix. The coef is to be checked.

        mu_i = np.atleast_1d(self.clip_mu(mu_i))[np.newaxis, np.newaxis, :]
        mu_t = np.atleast_1d(self.clip_mu(mu_t))[np.newaxis, :, np.newaxis]
        dphi = np.atleast_1d(dphi)[:, np.newaxis, np.newaxis]

        sin_i = np.sqrt(1 - mu_i**2)
        sin_t = np.sqrt(1 - mu_t**2)

        cos_phi = np.cos(dphi)
        sin_phi = np.sin(dphi)

        ki = vector3.from_xyz(sin_i, 0, -mu_i)
        kt = vector3.from_xyz(sin_t * cos_phi, sin_t * sin_phi, -mu_t)

        # compute the local transmission Fresnel coefficient
        ktd = ki * n_1.real - kt * n_2.real  # Eq 2.1.87

        n = ktd / (np.sign(ktd.z) * ktd.norm)  # Eq 2.1.128

        n_kt = -vector3.dot(n, kt)
        n_ki = -vector3.dot(n, ki)

        # compute Fresnel coefficients at stationary point
        Rh = (n_1.real * n_ki - n_2.real * n_kt) / (
            n_1.real * n_ki + n_2.real * n_kt)  # Eq. 2.1.132a
        Rv = (n_2.real * n_ki - n_1.real * n_kt) / (
            n_2.real * n_ki + n_1.real * n_kt)  # Eq. 2.1.132b

        no_compatible_slopes = (n_kt < 0) | (n_ki < 0)

        Rh[no_compatible_slopes] = -1
        Rv[no_compatible_slopes] = -1

        # define polarizations
        ht = vector3.from_xyz(-sin_phi, cos_phi, 0)
        vt = vector3.from_xyz(-mu_t * cos_phi, -mu_t * sin_phi, -sin_t)

        hi = vector3.from_xyz(0, 1, 0)
        vi = vector3.from_xyz(-mu_i, 0, -sin_i)

        # compute the cosines
        cross_ki_kt_norm = vector3.cross(ki, kt).norm
        colinear = cross_ki_kt_norm < 1e-4
        # avoid warning due to divide error, the colinear case is solved independantly:
        cross_ki_kt_norm[colinear] = 1

        ht_ki = vector3.dot(ht, ki) / cross_ki_kt_norm
        ht_ki[colinear] = -1  # checked with sympy

        vt_ki = vector3.dot(vt, ki) / cross_ki_kt_norm
        vt_ki[colinear] = 0  # checked with sympy

        hi_kt = vector3.dot(hi, kt) / cross_ki_kt_norm
        hi_kt[colinear] = 1  # checked with sympy
        vi_kt = vector3.dot(vi, kt) / cross_ki_kt_norm
        vi_kt[colinear] = 0  # checked with sympy

        Wvv = abs2(ht_ki * hi_kt * (1 + Rh) + vt_ki * vi_kt *
                   (1 + Rv) * eta1_eta)  # Eqs 2.1.130 in Tsang_tomeIII
        Whh = abs2(vt_ki * vi_kt * (1 + Rh) + ht_ki * hi_kt *
                   (1 + Rv) * eta1_eta)

        Whv = abs2(-vt_ki * hi_kt * (1 + Rh) + ht_ki * vi_kt *
                   (1 + Rv) * eta1_eta)
        Wvh = abs2(ht_ki * vi_kt * (1 + Rh) - vt_ki * hi_kt *
                   (1 + Rv) * eta1_eta)

        transmission_coefficients = smrt_matrix.zeros(
            (npol, npol, dphi.shape[0], mu_t.shape[1], mu_i.shape[2]))

        transmission_coefficients[0, 0] = Wvv
        transmission_coefficients[0, 1] = Wvh
        transmission_coefficients[1, 0] = Whv
        transmission_coefficients[1, 1] = Whh

        smrt_norm = 1 / (4 * np.pi
                         )  # SMRT requires scattering coefficient / 4 * pi

        coef = smrt_norm * 2 * eps_2 * ktd.norm2 * n_kt**2 / (eta1_eta * self.mean_square_slope * mu_i * ktd.z**4) * \
            np.exp(-(ktd.x**2 + ktd.y**2) / (2 * ktd.z**2 * self.mean_square_slope))   # Eq. 2.1.130   NB: k1^2 -> eps_2

        if self.shadow_correction:
            # this hack to avoid division-by-zero is safe, because the shadow_function is only important for large angles
            sin_i[sin_i < 1e-3] = 1e-3
            sin_t[sin_t < 1e-3] = 1e-3
            s = 1 / (1 + shadow_function(self.mean_square_slope, mu_i / sin_i)
                     + shadow_function(self.mean_square_slope, mu_t / sin_t))
            coef *= s

        return transmission_coefficients * coef.real