def outgoing_spherical_wave_expansion(self, layer_system): """The dipole field as an expansion in spherical vector wave functions. Args: layer_system (smuthi.layers.LayerSystem): stratified medium Returns: outgoing smuthi.field_expansion.SphericalWaveExpansion object """ laynum = layer_system.layer_number(self.position[2]) k = layer_system.refractive_indices[laynum] * self.angular_frequency() swe_out = fldex.SphericalWaveExpansion( k=k, l_max=1, m_max=1, kind='outgoing', reference_point=self.position, lower_z=layer_system.lower_zlimit(laynum), upper_z=layer_system.upper_zlimit(laynum)) l = 1 for tau in range(2): for m in range(-1, 2): ex, ey, ez = vwf.spherical_vector_wave_function( 0, 0, 0, k, 1, tau, l, -m) b = 1j * k / np.pi * 1j * self.angular_frequency() * ( ex * self.current()[0] + ey * self.current()[1] + ez * self.current()[2]) swe_out.coefficients[fldex.multi_to_single_index( tau, l, m, 1, 1)] = b return swe_out
def relative_difference_Tmatrices(Tmat_s, lmax_s, mmax_s, Tmat_l, lmax_l, mmax_l): n_list_s = np.zeros(len(Tmat_s), dtype=int) n_list_l = np.zeros(len(Tmat_s), dtype=int) idx = 0 for tau in range(2): for l in range(1, lmax_s + 1): for m in range(np.max([-l, -mmax_s]), np.min([l, mmax_s]) + 1): n_list_s[idx] = fldex.multi_to_single_index( tau, l, m, lmax_s, mmax_s) n_list_l[idx] = fldex.multi_to_single_index( tau, l, m, lmax_l, mmax_l) idx += 1 row, column = np.meshgrid(n_list_s, n_list_s) row2, column2 = np.meshgrid(n_list_l, n_list_l) TMat_temp = np.zeros([len(Tmat_l), len(Tmat_l)], dtype=complex) TMat_temp[row2, column2] = Tmat_s[row, column] return np.linalg.norm(Tmat_l - TMat_temp) / np.linalg.norm(Tmat_l)
def test_multi2single_stlm(): idcs = [] lmax = 5 mmax = 5 count = 0 for tau in range(2): for l in range(1, lmax + 1): for m in range(-l, l + 1): idcs.append( fldex.multi_to_single_index(tau=tau, l=l, m=m, l_max=lmax, m_max=mmax)) count += 1 assert idcs == list(range(len(idcs))) ind_num = fldex.blocksize(lmax, mmax) assert count == ind_num idcs = [] lmax = 6 mmax = 3 count = 0 for tau in range(2): for l in range(1, lmax + 1): mlim = min(l, mmax) for m in range(-mlim, mlim + 1): idcs.append( fldex.multi_to_single_index(tau=tau, l=l, m=m, l_max=lmax, m_max=mmax)) count += 1 assert idcs == list(range(len(idcs))) ind_num = fldex.blocksize(lmax, mmax) assert count == ind_num
def index(self, i, tau, l, m): r""" Args: i (int): particle number tau (int): spherical polarization index l (int): multipole degree m (int): multipole order Returns: Position in a system vector that corresponds to the :math:`(\tau, l, m)` coefficient of the i-th particle. """ blocksizes = [ fldex.blocksize(particle.l_max, particle.m_max) for particle in self.particle_list[:i] ] return sum(blocksizes) + fldex.multi_to_single_index( tau, l, m, self.particle_list[i].l_max, self.particle_list[i].m_max)
def t_matrix_sphere(k_medium, k_particle, radius, l_max, m_max): """T-matrix of a spherical scattering object. Args: k_medium (float or complex): Wavenumber in surrounding medium (inverse length unit) k_particle (float or complex): Wavenumber inside sphere (inverse length unit) radius (float): Radius of sphere (length unit) l_max (int): Maximal multipole degree m_max (int): Maximal multipole order blocksize (int): Total number of index combinations multi_to_single_index_map (function): A function that maps the SVWF indices (tau, l, m) to a single index Returns: T-matrix as ndarray """ t = np.zeros( (fldex.blocksize(l_max, m_max), fldex.blocksize(l_max, m_max)), dtype=complex) for tau in range(2): for m in range(-m_max, m_max + 1): for l in range(max(1, abs(m)), l_max + 1): n = fldex.multi_to_single_index(tau, l, m, l_max, m_max) t[n, n] = mie_coefficient(tau, l, k_medium, k_particle, radius) return t
def taxsym_read_tmatrix(filename, l_max, m_max): """Export TAXSYM.f90 output to SMUTHI T-matrix. .. todo:: feedback to adapt particle m_max to nfmds m_max Args: filename (str): Name of the file containing the T-matrix output of TAXSYM.f90 l_max (int): Maximal multipole degree m_max (int): Maximal multipole order Returns: T-matrix as numpy.ndarray """ with open(smuthi.nfmds.nfmds_folder + '/TMATFILES/Info' + filename, 'r') as info_file: info_file_lines = info_file.readlines() assert 'The scatterer is an axisymmetric particle' in ' '.join( info_file_lines) for line in info_file_lines: if line.split()[0:4] == ['-', 'maximum', 'expansion', 'order,']: n_rank = int(line.split()[-1][0:-1]) if line.split()[0:5] == ['-', 'number', 'of', 'azimuthal', 'modes,']: m_rank = int(line.split()[-1][0:-1]) with open(smuthi.nfmds.nfmds_folder + '/TMATFILES/' + filename, 'r') as tmat_file: tmat_lines = tmat_file.readlines() t_nfmds = [[]] column_index = 0 for line in tmat_lines[3:]: split_line = line.split() for i_entry in range(int(len(split_line) / 2)): if column_index == 2 * n_rank: t_nfmds.append([]) column_index = 0 t_nfmds[-1].append( complex(split_line[2 * i_entry]) + 1j * complex(split_line[2 * i_entry + 1])) column_index += 1 t_matrix = np.zeros( (fldex.blocksize(l_max, m_max), fldex.blocksize(l_max, m_max)), dtype=complex) for m in range(-m_max, m_max + 1): n_max_nfmds = n_rank - max(1, abs(m)) + 1 for tau1 in range(2): for l1 in range(max(1, abs(m)), l_max + 1): n1 = fldex.multi_to_single_index(tau=tau1, l=l1, m=m, l_max=l_max, m_max=m_max) l1_nfmds = l1 - max(1, abs(m)) n1_nfmds = 2 * n_rank * abs(m) + tau1 * n_max_nfmds + l1_nfmds for tau2 in range(2): for l2 in range(max(1, abs(m)), l_max + 1): n2 = fldex.multi_to_single_index(tau=tau2, l=l2, m=m, l_max=l_max, m_max=m_max) l2_nfmds = l2 - max(1, abs(m)) n2_nfmds = tau2 * n_max_nfmds + l2_nfmds if abs(m) <= m_rank: if m >= 0: t_matrix[n1, n2] = t_nfmds[n1_nfmds][n2_nfmds] else: t_matrix[n1, n2] = t_nfmds[n1_nfmds][n2_nfmds] * ( -1)**(tau1 + tau2) return t_matrix
def __init__(self, vacuum_wavelength, particle_list, layer_system, k_parallel='default', resolution=None, interpolator_kind='linear'): z_list = [particle.position[2] for particle in particle_list] assert z_list.count(z_list[0]) == len(z_list) CouplingMatrixRadialLookup.__init__(self, vacuum_wavelength, particle_list, layer_system, k_parallel, resolution) x_array = np.array( [particle.position[0] for particle in particle_list]) y_array = np.array( [particle.position[1] for particle in particle_list]) self.particle_rho_array = np.sqrt( (x_array[:, None] - x_array[None, :])**2 + (y_array[:, None] - y_array[None, :])**2) self.particle_phi_array = np.arctan2( y_array[:, None] - y_array[None, :], x_array[:, None] - x_array[None, :]) # contains for each n all positions in the large system arrays that correspond to n: self.system_vector_index_list = [[] for i in range(self.blocksize)] # same size as system_vector_index_list, contains the according particle numbers: self.particle_number_list = [[] for i in range(self.blocksize)] self.m_list = [None for i in range(self.blocksize)] for i, particle in enumerate(particle_list): for m in range(-particle.m_max, particle.m_max + 1): for l in range(max(1, abs(m)), particle.l_max + 1): for tau in range(2): n_lookup = fldex.multi_to_single_index( tau=tau, l=l, m=m, l_max=self.l_max, m_max=self.m_max) self.system_vector_index_list[n_lookup].append( self.index(i, tau, l, m)) self.particle_number_list[n_lookup].append(i) self.m_list[n_lookup] = m for n in range(self.blocksize): self.system_vector_index_list[n] = np.array( self.system_vector_index_list[n]) self.particle_number_list[n] = np.array( self.particle_number_list[n]) lookup = [[None for i in range(self.blocksize)] for i2 in range(self.blocksize)] for n1 in range(self.blocksize): for n2 in range(self.blocksize): lookup[n1][n2] = scipy.interpolate.interp1d( x=self.radial_distance_array, y=self.lookup_table[:, n1, n2], kind=interpolator_kind, axis=-1, assume_sorted=True) def matvec(in_vec): out_vec = np.zeros(shape=in_vec.shape, dtype=complex) for n1 in range(self.blocksize): i1 = self.particle_number_list[n1] idx1 = self.system_vector_index_list[n1] m1 = self.m_list[n1] for n2 in range(self.blocksize): i2 = self.particle_number_list[n2] idx2 = self.system_vector_index_list[n2] m2 = self.m_list[n2] rho = self.particle_rho_array[i1[:, None], i2[None, :]] phi = self.particle_phi_array[i1[:, None], i2[None, :]] M = lookup[n1][n2](rho) M = M * np.exp(1j * (m2 - m1) * phi) out_vec[idx1] += M.dot(in_vec[idx2]) return out_vec self.linear_operator = scipy.sparse.linalg.LinearOperator( shape=self.shape, matvec=matvec, dtype=complex)
def __init__(self, vacuum_wavelength, particle_list, layer_system, k_parallel='default', resolution=None, cuda_blocksize=None, interpolator_kind='linear'): if cuda_blocksize is None: cuda_blocksize = cu.default_blocksize CouplingMatrixRadialLookup.__init__(self, vacuum_wavelength, particle_list, layer_system, k_parallel, resolution) sys.stdout.write('Prepare CUDA kernel and device lookup data ... ') sys.stdout.flush() start_time = time.time() if interpolator_kind == 'linear': coupling_source = cu.linear_radial_lookup_source % ( self.blocksize, self.shape[0], self.radial_distance_array.min(), resolution) elif interpolator_kind == 'cubic': coupling_source = cu.cubic_radial_lookup_source % ( self.blocksize, self.shape[0], self.radial_distance_array.min(), resolution) coupling_function = SourceModule(coupling_source).get_function( "coupling_kernel") n_lookup_array = np.zeros(self.shape[0], dtype=np.uint32) m_particle_array = np.zeros(self.shape[0], dtype=np.float32) x_array = np.zeros(self.shape[0], dtype=np.float32) y_array = np.zeros(self.shape[0], dtype=np.float32) i_particle = 0 for i, particle in enumerate(particle_list): for m in range(-particle.m_max, particle.m_max + 1): for l in range(max(1, abs(m)), particle.l_max + 1): for tau in range(2): #idx = self.index(i, tau, l, m) i_taulm = fldex.multi_to_single_index( tau, l, m, particle.l_max, particle.m_max) idx = i_particle + i_taulm n_lookup_array[idx] = fldex.multi_to_single_index( tau, l, m, self.l_max, self.m_max) m_particle_array[idx] = m # scale the x and y position to the lookup resolution: x_array[idx] = particle.position[0] y_array[idx] = particle.position[1] i_particle += fldex.blocksize(particle.l_max, particle.m_max) # lookup as numpy array in required shape re_lookup = self.lookup_table.real.astype(np.float32) im_lookup = self.lookup_table.imag.astype(np.float32) # transfer data to gpu n_lookup_array_d = gpuarray.to_gpu(n_lookup_array) m_particle_array_d = gpuarray.to_gpu(m_particle_array) x_array_d = gpuarray.to_gpu(x_array) y_array_d = gpuarray.to_gpu(y_array) re_lookup_d = gpuarray.to_gpu(re_lookup) im_lookup_d = gpuarray.to_gpu(im_lookup) sys.stdout.write('done | elapsed: ' + str(int(time.time() - start_time)) + 's\n') sys.stdout.flush() cuda_gridsize = (self.shape[0] + cuda_blocksize - 1) // cuda_blocksize def matvec(in_vec): re_in_vec_d = gpuarray.to_gpu(np.float32(in_vec.real)) im_in_vec_d = gpuarray.to_gpu(np.float32(in_vec.imag)) re_result_d = gpuarray.zeros(in_vec.shape, dtype=np.float32) im_result_d = gpuarray.zeros(in_vec.shape, dtype=np.float32) coupling_function(n_lookup_array_d.gpudata, m_particle_array_d.gpudata, x_array_d.gpudata, y_array_d.gpudata, re_lookup_d.gpudata, im_lookup_d.gpudata, re_in_vec_d.gpudata, im_in_vec_d.gpudata, re_result_d.gpudata, im_result_d.gpudata, block=(cuda_blocksize, 1, 1), grid=(cuda_gridsize, 1)) return re_result_d.get() + 1j * im_result_d.get() self.linear_operator = scipy.sparse.linalg.LinearOperator( shape=self.shape, matvec=matvec, dtype=complex)
def __init__(self, vacuum_wavelength, particle_list, layer_system, k_parallel='default', resolution=None, interpolator_kind='cubic'): if interpolator_kind == 'cubic': interpolation_order = 3 else: interpolation_order = 1 CouplingMatrixVolumeLookup.__init__(self, vacuum_wavelength, particle_list, layer_system, k_parallel, resolution) x_array = np.array( [particle.position[0] for particle in particle_list]) y_array = np.array( [particle.position[1] for particle in particle_list]) z_array = np.array( [particle.position[2] for particle in particle_list]) self.particle_rho_array = np.sqrt( (x_array[:, None] - x_array[None, :])**2 + (y_array[:, None] - y_array[None, :])**2) self.particle_phi_array = np.arctan2( y_array[:, None] - y_array[None, :], x_array[:, None] - x_array[None, :]) self.particle_sz_array = z_array[:, None] + z_array[None, :] self.particle_dz_array = z_array[:, None] - z_array[None, :] # contains for each n all positions in the large system arrays that correspond to n: self.system_vector_index_list = [[] for i in range(self.blocksize)] # same size as system_vector_index_list, contains the according particle numbers: self.particle_number_list = [[] for i in range(self.blocksize)] self.m_list = [None for i in range(self.blocksize)] for i, particle in enumerate(particle_list): for m in range(-particle.m_max, particle.m_max + 1): for l in range(max(1, abs(m)), particle.l_max + 1): for tau in range(2): n_lookup = fldex.multi_to_single_index( tau=tau, l=l, m=m, l_max=self.l_max, m_max=self.m_max) self.system_vector_index_list[n_lookup].append( self.index(i, tau, l, m)) self.particle_number_list[n_lookup].append(i) self.m_list[n_lookup] = m for n in range(self.blocksize): self.system_vector_index_list[n] = np.array( self.system_vector_index_list[n]) self.particle_number_list[n] = np.array( self.particle_number_list[n]) self.lookup_plus_real = [[None for i in range(self.blocksize)] for i2 in range(self.blocksize)] self.lookup_plus_imag = [[None for i in range(self.blocksize)] for i2 in range(self.blocksize)] self.lookup_minus_real = [[None for i in range(self.blocksize)] for i2 in range(self.blocksize)] self.lookup_minus_imag = [[None for i in range(self.blocksize)] for i2 in range(self.blocksize)] for n1 in range(self.blocksize): for n2 in range(self.blocksize): self.lookup_plus_real[n1][ n2] = scipy.interpolate.RectBivariateSpline( x=self.rho_array, y=self.sum_z_array, z=self.lookup_table_plus[:, :, n1, n2].real, kx=interpolation_order, ky=interpolation_order) self.lookup_plus_imag[n1][ n2] = scipy.interpolate.RectBivariateSpline( x=self.rho_array, y=self.sum_z_array, z=self.lookup_table_plus[:, :, n1, n2].imag, kx=interpolation_order, ky=interpolation_order) self.lookup_minus_real[n1][ n2] = scipy.interpolate.RectBivariateSpline( x=self.rho_array, y=self.diff_z_array, z=self.lookup_table_minus[:, :, n1, n2].real, kx=interpolation_order, ky=interpolation_order) self.lookup_minus_imag[n1][ n2] = scipy.interpolate.RectBivariateSpline( x=self.rho_array, y=self.diff_z_array, z=self.lookup_table_minus[:, :, n1, n2].imag, kx=interpolation_order, ky=interpolation_order) def matvec(in_vec): out_vec = np.zeros(shape=in_vec.shape, dtype=complex) for n1 in range(self.blocksize): i1 = self.particle_number_list[n1] idx1 = self.system_vector_index_list[n1] m1 = self.m_list[n1] for n2 in range(self.blocksize): i2 = self.particle_number_list[n2] idx2 = self.system_vector_index_list[n2] m2 = self.m_list[n2] rho = self.particle_rho_array[i1[:, None], i2[None, :]] phi = self.particle_phi_array[i1[:, None], i2[None, :]] sz = self.particle_sz_array[i1[:, None], i2[None, :]] dz = self.particle_dz_array[i1[:, None], i2[None, :]] Mpl = self.lookup_plus_real[n1][n2].ev( rho, sz) + 1j * self.lookup_plus_imag[n1][n2].ev(rho, sz) Mmn = self.lookup_minus_real[n1][n2].ev( rho, dz) + 1j * self.lookup_minus_imag[n1][n2].ev(rho, dz) M = (Mpl + Mmn) * np.exp(1j * (m2 - m1) * phi) out_vec[idx1] += M.dot(in_vec[idx2]) return out_vec self.linear_operator = scipy.sparse.linalg.LinearOperator( shape=self.shape, matvec=matvec, dtype=complex)