コード例 #1
0
ファイル: test_nlu_engine.py プロジェクト: yucdong/snips-nlu
    def test_should_use_parsers_sequentially(self):
        # Given
        input_text = "hello world"
        intent = intent_classification_result(intent_name='dummy_intent_1',
                                              probability=0.7)
        slots = [
            unresolved_slot(match_range=(6, 11),
                            value='world',
                            entity='mocked_entity',
                            slot_name='mocked_slot_name')
        ]

        class FirstIntentParserConfig(ProcessingUnitConfig):
            unit_name = "first_intent_parser"

            def to_dict(self):
                return {"unit_name": self.unit_name}

            @classmethod
            def from_dict(cls, obj_dict):
                return FirstIntentParserConfig()

            def get_required_resources(self):
                return None

        class FirstIntentParser(IntentParser):
            unit_name = "first_intent_parser"
            config_type = FirstIntentParserConfig

            def fit(self, dataset, force_retrain):
                self._fitted = True
                return self

            @property
            def fitted(self):
                return hasattr(self, '_fitted') and self._fitted

            def parse(self, text, intents):
                return empty_result(text)

            def persist(self, path):
                path = Path(path)
                path.mkdir()
                with (path / "metadata.json").open(mode="w") as f:
                    f.write(json_string({"unit_name": self.unit_name}))

            @classmethod
            def from_path(cls, path):
                cfg = cls.config_type()
                return cls(cfg)

        class SecondIntentParserConfig(ProcessingUnitConfig):
            unit_name = "second_intent_parser"

            def to_dict(self):
                return {"unit_name": self.unit_name}

            @classmethod
            def from_dict(cls, obj_dict):
                return SecondIntentParserConfig()

            def get_required_resources(self):
                return None

        class SecondIntentParser(IntentParser):
            unit_name = "second_intent_parser"
            config_type = SecondIntentParserConfig

            def fit(self, dataset, force_retrain):
                self._fitted = True
                return self

            @property
            def fitted(self):
                return hasattr(self, '_fitted') and self._fitted

            def parse(self, text, intents):
                if text == input_text:
                    return parsing_result(text, intent, slots)
                return empty_result(text)

            def persist(self, path):
                path = Path(path)
                path.mkdir()
                with (path / "metadata.json").open(mode="w") as f:
                    f.write(json_string({"unit_name": self.unit_name}))

            @classmethod
            def from_path(cls, path):
                cfg = cls.config_type()
                return cls(cfg)

        register_processing_unit(FirstIntentParser)
        register_processing_unit(SecondIntentParser)

        mocked_dataset_metadata = {
            "language_code": "en",
            "entities": {
                "mocked_entity": {
                    "automatically_extensible": True,
                    "utterances": dict()
                }
            },
            "slot_name_mappings": {
                "dummy_intent_1": {
                    "mocked_slot_name": "mocked_entity"
                }
            }
        }

        config = NLUEngineConfig(
            [FirstIntentParserConfig(),
             SecondIntentParserConfig()])
        engine = SnipsNLUEngine(config).fit(SAMPLE_DATASET)
        # pylint:disable=protected-access
        engine._dataset_metadata = mocked_dataset_metadata
        # pylint:enable=protected-access

        # When
        parse = engine.parse(input_text)

        # Then
        expected_slots = [custom_slot(s) for s in slots]
        expected_parse = parsing_result(input_text, intent, expected_slots)
        self.assertDictEqual(expected_parse, parse)
コード例 #2
0
ファイル: test_nlu_engine.py プロジェクト: warp-x/snips-nlu
    def test_should_use_parsers_sequentially(self):
        # Given
        input_text = "hello world"
        intent = intent_classification_result(intent_name='dummy_intent_1',
                                              probability=0.7)
        slots = [
            unresolved_slot(match_range=(6, 11),
                            value='world',
                            entity='mocked_entity',
                            slot_name='mocked_slot_name')
        ]

        class TestIntentParser1Config(ProcessingUnitConfig):
            unit_name = "test_intent_parser1"

            def to_dict(self):
                return {"unit_name": self.unit_name}

            @classmethod
            def from_dict(cls, obj_dict):
                return TestIntentParser1Config()

        class TestIntentParser1(IntentParser):
            unit_name = "test_intent_parser1"
            config_type = TestIntentParser1Config

            def fit(self, dataset, force_retrain):
                self._fitted = True
                return self

            @property
            def fitted(self):
                return hasattr(self, '_fitted') and self._fitted

            def parse(self, text, intents):
                return empty_result(text)

            def to_dict(self):
                return {
                    "unit_name": self.unit_name,
                }

            @classmethod
            def from_dict(cls, unit_dict):
                conf = cls.config_type()
                return TestIntentParser1(conf)

        class TestIntentParser2Config(ProcessingUnitConfig):
            unit_name = "test_intent_parser2"

            def to_dict(self):
                return {"unit_name": self.unit_name}

            @classmethod
            def from_dict(cls, obj_dict):
                return TestIntentParser2Config()

        class TestIntentParser2(IntentParser):
            unit_name = "test_intent_parser2"
            config_type = TestIntentParser2Config

            def fit(self, dataset, force_retrain):
                self._fitted = True
                return self

            @property
            def fitted(self):
                return hasattr(self, '_fitted') and self._fitted

            def parse(self, text, intents):
                if text == input_text:
                    return parsing_result(text, intent, slots)
                return empty_result(text)

            def to_dict(self):
                return {
                    "unit_name": self.unit_name,
                }

            @classmethod
            def from_dict(cls, unit_dict):
                conf = cls.config_type()
                return TestIntentParser2(conf)

        register_processing_unit(TestIntentParser1)
        register_processing_unit(TestIntentParser2)

        mocked_dataset_metadata = {
            "language_code": "en",
            "entities": {
                "mocked_entity": {
                    "automatically_extensible": True,
                    "utterances": dict()
                }
            },
            "slot_name_mappings": {
                "dummy_intent_1": {
                    "mocked_slot_name": "mocked_entity"
                }
            }
        }

        config = NLUEngineConfig(
            [TestIntentParser1Config(),
             TestIntentParser2Config()])
        engine = SnipsNLUEngine(config).fit(SAMPLE_DATASET)
        # pylint:disable=protected-access
        engine._dataset_metadata = mocked_dataset_metadata
        # pylint:enable=protected-access

        # When
        parse = engine.parse(input_text)

        # Then
        expected_slots = [custom_slot(s) for s in slots]
        expected_parse = parsing_result(input_text, intent, expected_slots)
        self.assertDictEqual(expected_parse, parse)
コード例 #3
0
ファイル: test_nlu_engine.py プロジェクト: lym0302/snips-nlu
    def test_should_use_parsers_sequentially(self):
        # Given
        input_text = "hello world"
        intent = intent_classification_result(
            intent_name='dummy_intent_1', probability=0.7)
        slots = [unresolved_slot(match_range=(6, 11),
                                 value='world',
                                 entity='mocked_entity',
                                 slot_name='mocked_slot_name')]

        class TestIntentParser1Config(ProcessingUnitConfig):
            unit_name = "test_intent_parser1"

            def to_dict(self):
                return {"unit_name": self.unit_name}

            @classmethod
            def from_dict(cls, obj_dict):
                return TestIntentParser1Config()

        class TestIntentParser1(IntentParser):
            unit_name = "test_intent_parser1"
            config_type = TestIntentParser1Config

            def fit(self, dataset, force_retrain):
                self._fitted = True
                return self

            @property
            def fitted(self):
                return hasattr(self, '_fitted') and self._fitted

            def parse(self, text, intents):
                return empty_result(text)

            def to_dict(self):
                return {
                    "unit_name": self.unit_name,
                }

            @classmethod
            def from_dict(cls, unit_dict):
                conf = cls.config_type()
                return TestIntentParser1(conf)

        class TestIntentParser2Config(ProcessingUnitConfig):
            unit_name = "test_intent_parser2"

            def to_dict(self):
                return {"unit_name": self.unit_name}

            @classmethod
            def from_dict(cls, obj_dict):
                return TestIntentParser2Config()

        class TestIntentParser2(IntentParser):
            unit_name = "test_intent_parser2"
            config_type = TestIntentParser2Config

            def fit(self, dataset, force_retrain):
                self._fitted = True
                return self

            @property
            def fitted(self):
                return hasattr(self, '_fitted') and self._fitted

            def parse(self, text, intents):
                if text == input_text:
                    return parsing_result(text, intent, slots)
                return empty_result(text)

            def to_dict(self):
                return {
                    "unit_name": self.unit_name,
                }

            @classmethod
            def from_dict(cls, unit_dict):
                conf = cls.config_type()
                return TestIntentParser2(conf)

        register_processing_unit(TestIntentParser1)
        register_processing_unit(TestIntentParser2)

        mocked_dataset_metadata = {
            "language_code": "en",
            "entities": {
                "mocked_entity": {
                    "automatically_extensible": True,
                    "utterances": dict()
                }
            },
            "slot_name_mappings": {
                "dummy_intent_1": {
                    "mocked_slot_name": "mocked_entity"
                }
            }
        }

        config = NLUEngineConfig([TestIntentParser1Config(),
                                  TestIntentParser2Config()])
        engine = SnipsNLUEngine(config).fit(SAMPLE_DATASET)
        # pylint:disable=protected-access
        engine._dataset_metadata = mocked_dataset_metadata
        # pylint:enable=protected-access

        # When
        parse = engine.parse(input_text)

        # Then
        expected_slots = [custom_slot(s) for s in slots]
        expected_parse = parsing_result(input_text, intent, expected_slots)
        self.assertDictEqual(expected_parse, parse)