コード例 #1
0
 def test_random_policy(self):
     policy = RandomPolicy(2, sequence_length=2)
     n_samples = 100
     samples = [policy.generate() for _ in range(n_samples)]
     a_ct = samples.count([0, 0])
     b_ct = samples.count([0, 1])
     c_ct = samples.count([1, 0])
     d_ct = samples.count([1, 1])
     self.assertGreater(a_ct, 0)
     self.assertGreater(b_ct, 0)
     self.assertGreater(c_ct, 0)
     self.assertGreater(d_ct, 0)
     self.assertEqual(a_ct + b_ct + c_ct + d_ct, n_samples)
コード例 #2
0
 def test_tf_applier_pandas_generator(self):
     df = self._get_x_df_with_str()
     policy = RandomPolicy(1,
                           sequence_length=2,
                           n_per_original=2,
                           keep_original=False)
     applier = PandasTFApplier([square], policy)
     gen = applier.apply_generator(df, batch_size=2)
     df_expected = [
         pd.DataFrame(
             {
                 "num": [1, 1, 16, 16],
                 "strs": ["x", "x", "y", "y"]
             },
             index=[0, 0, 1, 1],
         ),
         pd.DataFrame({
             "num": [81, 81],
             "strs": ["z", "z"]
         }, index=[2, 2]),
     ]
     for df_batch, df_batch_expected in zip(gen, df_expected):
         self.assertEqual(df_batch.num.dtype, "int64")
         pd.testing.assert_frame_equal(df_batch, df_batch_expected)
     pd.testing.assert_frame_equal(df, self._get_x_df_with_str())
コード例 #3
0
def main():
    df = pd.read_csv('../airbnb/reviews.tsv', sep='\t')

    newdf = df[['comments', 'Great (1) Not Great (0)']]
    newdf.columns = ['text', 'label']
    chunks = []
    labels = []
    buffer = []
    for i, row in newdf.iterrows():
        sents = nltk.sent_tokenize(row['text'])
        for sent in sents:
            buffer.append(sent)
            if (len(buffer)) % 3 == 0:
                chunks.append(" ".join(buffer))
                labels.append(row['label'])
                buffer = [buffer[random.randint(0, 2)]]
        if len(buffer) > 1:
            chunks.append(" ".join(buffer))
            labels.append(row['label'])
            buffer = []

    chunkedDf = pd.DataFrame({'text': chunks, 'label': labels})

    random_policy = RandomPolicy(len(tfs),
                                 sequence_length=4,
                                 n_per_original=1,
                                 keep_original=True)
    tf_applier = PandasTFApplier(tfs, random_policy)
    newdf_augmented = tf_applier.apply(chunkedDf)
    print(len(newdf))
    print(len(newdf_augmented))
    newdf_augmented.to_csv('airbnb_augmented.csv')
コード例 #4
0
 def test_tf_applier_returns_none(self) -> None:
     data = self._get_x_namespace()
     policy = RandomPolicy(
         1, sequence_length=2, n_per_original=2, keep_original=True
     )
     applier = TFApplier([square_returns_none], policy)
     data_augmented = applier.apply(data, progress_bar=False)
     vals = [1, 1, 1, 2, 3, 81, 81]
     self.assertEqual(data_augmented, self._get_x_namespace(vals))
     self.assertEqual(data, self._get_x_namespace())
コード例 #5
0
 def test_tf_applier_returns_none_generator(self) -> None:
     data = self._get_x_namespace()
     policy = RandomPolicy(
         1, sequence_length=2, n_per_original=2, keep_original=True
     )
     applier = TFApplier([square_returns_none], policy)
     batches_expected = [[1, 1, 1, 2], [3, 81, 81]]
     gen = applier.apply_generator(data, batch_size=2)
     for batch, batch_expected in zip(gen, batches_expected):
         self.assertEqual(batch, self._get_x_namespace(batch_expected))
     self.assertEqual(data, self._get_x_namespace())
コード例 #6
0
 def test_tf_applier_returns_none(self):
     df = self._get_x_df()
     policy = RandomPolicy(1,
                           sequence_length=2,
                           n_per_original=2,
                           keep_original=True)
     applier = PandasTFApplier([square_returns_none], policy)
     df_augmented = applier.apply(df, progress_bar=False)
     df_expected = pd.DataFrame(dict(num=[1, 1, 1, 2, 3, 81, 81]),
                                index=[0, 0, 0, 1, 2, 2, 2])
     self.assertEqual(df_augmented.num.dtype, "int64")
     pd.testing.assert_frame_equal(df_augmented, df_expected)
     pd.testing.assert_frame_equal(df, self._get_x_df())
コード例 #7
0
    def test_tf_applier(self) -> None:
        data = self._get_x_namespace()
        policy = RandomPolicy(
            1, sequence_length=2, n_per_original=1, keep_original=False
        )
        applier = TFApplier([square], policy)
        data_augmented = applier.apply(data, progress_bar=False)
        self.assertEqual(data_augmented, self._get_x_namespace([1, 16, 81]))
        self.assertEqual(data, self._get_x_namespace())

        data_augmented = applier.apply(data, progress_bar=True)
        self.assertEqual(data_augmented, self._get_x_namespace([1, 16, 81]))
        self.assertEqual(data, self._get_x_namespace())
コード例 #8
0
 def test_tf_applier_returns_none_generator(self):
     df = self._get_x_df()
     policy = RandomPolicy(
         1, sequence_length=2, n_per_original=2, keep_original=True
     )
     applier = PandasTFApplier([square_returns_none], policy)
     gen = applier.apply_generator(df, batch_size=2)
     df_expected = [
         make_df([1, 1, 1, 2], [0, 0, 0, 1]),
         make_df([3, 81, 81], [2, 2, 2]),
     ]
     for df_batch, df_batch_expected in zip(gen, df_expected):
         pd.testing.assert_frame_equal(df_batch, df_batch_expected)
     pd.testing.assert_frame_equal(df, self._get_x_df())
コード例 #9
0
def apply_tf_on_data(df_train):
    """
    Here we apply the transformation functions (from transformation_function.py)
    on the given train data frame.
    Return the enlarged data frame.
    """
    print("")
    print("Transformation Functions:")
    tfs = [transformation_function.change_perek, transformation_function.change_masechet]
    random_policy = RandomPolicy(
        len(tfs), sequence_length=len(tfs), n_per_original=TRANSFORMATION_FACTOR, keep_original=True
    )
    print("-Applying ["+str(len(tfs))+"] transformation functions with factor ["+str(TRANSFORMATION_FACTOR)+"] ...")
    tf_applier = PandasTFApplier(tfs, random_policy)
    df_train_augmented = tf_applier.apply(df_train)
    # Y_train_augmented = df_train_augmented["tag"].values
    print("DONE")
    return df_train_augmented
コード例 #10
0
    def test_tf_applier_pandas(self):
        df = self._get_x_df_with_str()
        policy = RandomPolicy(1,
                              sequence_length=2,
                              n_per_original=1,
                              keep_original=False)
        applier = PandasTFApplier([square], policy)
        df_augmented = applier.apply(df, progress_bar=False)
        df_expected = pd.DataFrame(dict(num=[1, 16, 81], strs=STR_DATA),
                                   index=[0, 1, 2])
        self.assertEqual(df_augmented.num.dtype, "int64")
        pd.testing.assert_frame_equal(df_augmented, df_expected)
        pd.testing.assert_frame_equal(df, self._get_x_df_with_str())

        df_augmented = applier.apply(df, progress_bar=True)
        df_expected = pd.DataFrame(dict(num=[1, 16, 81], strs=STR_DATA),
                                   index=[0, 1, 2])
        pd.testing.assert_frame_equal(df_augmented, df_expected)
        pd.testing.assert_frame_equal(df, self._get_x_df_with_str())
コード例 #11
0
def augmentation_evaluation(df_train, df_test, policy, p=None):
    tfs = [
        TransformationFunction.change_addr,
        TransformationFunction.change_business,
        TransformationFunction.change_o,
        TransformationFunction.randomly_delete,
        TransformationFunction.randomly_add
    ]

    if policy == "random":
        random_policy = RandomPolicy(len(tfs),
                                     sequence_length=2,
                                     n_per_original=2,
                                     keep_original=True)
        tf_applier = PandasTFApplier(tfs, random_policy)
        df_train_augmented = tf_applier.apply(df_train)
        Y_train_augmented = df_train_augmented["label"].values
        print(f"Original training set size: {len(df_train)}")
        print(f"Augmented training set size: {len(df_train_augmented)}")
        return df_train_augmented, Y_train_augmented

    if policy == "mean":
        if p is None:
            p = [0.1, 0.1, 0.1, 0.35, 0.35]
        mean_field_policy = MeanFieldPolicy(
            len(tfs),
            sequence_length=
            2,  # how many TFs to apply uniformly at random per data point
            n_per_original=
            2,  # how many augmented data points to generate per original data point
            keep_original=True,
            p=p,  # specify a sampling distribution for the TFs
        )
        tf_applier = PandasTFApplier(tfs, mean_field_policy)
        df_train_augmented = tf_applier.apply(df_train)
        Y_train_augmented = df_train_augmented["label"].values
        print(f"Original training set size: {len(df_train)}")
        print(f"Augmented training set size: {len(df_train_augmented)}")
        return df_train_augmented, Y_train_augmented
コード例 #12
0
# As we'll see below, Snorkel is compatible with such learned augmentation policies.

# %% [markdown]
# ## 3. Applying Transformation Functions

# %% [markdown]
# We'll first define a `Policy` to determine what sequence of TFs to apply to each data point.
# We'll start with a [`RandomPolicy`](https://snorkel.readthedocs.io/en/master/packages/_autosummary/augmentation/snorkel.augmentation.RandomPolicy.html)
# that samples `sequence_length=2` TFs to apply uniformly at random per data point.
# The `n_per_original` argument determines how many augmented data points to generate per original data point.

# %%
from snorkel.augmentation import RandomPolicy

random_policy = RandomPolicy(len(tfs),
                             sequence_length=2,
                             n_per_original=2,
                             keep_original=True)

# %% [markdown]
# In some cases, we can do better than uniform random sampling.
# We might have domain knowledge that some TFs should be applied more frequently than others,
# or have trained an [automated data augmentation model](https://snorkel.org/tanda/)
# that learned a sampling distribution for the TFs.
# Snorkel supports this use case with a
# [`MeanFieldPolicy`](https://snorkel.readthedocs.io/en/master/packages/_autosummary/augmentation/snorkel.augmentation.MeanFieldPolicy.html),
# which allows you to specify a sampling distribution for the TFs.
# We give higher probabilities to the `replace_[X]_with_synonym` TFs, since those provide more information to the model.

# %%
from snorkel.augmentation import MeanFieldPolicy