def getParametersList(cls): parameters = super(RandomWordProvider, cls).getParametersList()[:] parameters += [ DataProviderParameter('choices', 'Choices', 'A comma separated list of word choices', False), DataProviderParameter('prefix', 'Prefix', 'A prefix to apply to the words.', False) ] return parameters
def getParametersList(cls): parameters = super(RandomPhraseProvider, cls).getParametersList()[:] parameters += [ DataProviderParameter('min_words', 'Minimum words', ('The minimum number of words to' ' include in the phrase')), DataProviderParameter('max_words', 'Maximum words', ('The maximum number of words to' ' include in the phrase')), ] return parameters
def getParametersList(cls): parameters = super(FixedDateTimeProvider, cls).getParametersList()[:] parameters += [ DataProviderParameter('year', 'Year', 'Defaults to the current year', False), DataProviderParameter('month', 'Month', 'Defaults to the current month', False), DataProviderParameter('day', 'Day', 'Defaults to the current day', False) ] return parameters
def getParametersList(cls): parameters = (super(RandomUniformDistributionFloatProvider, cls).getParametersList()[:]) parameters += [ DataProviderParameter('min', 'Minimum value', 'A minimum value to be sampled, inclusive.', False), DataProviderParameter('max', 'Maximum value', 'A maximum value to be sampled, inclusive.', False) ] return parameters
def getParametersList(cls): parameters = (super(RandomNormalDistributionFloatProvider, cls).getParametersList()[:]) parameters += [ DataProviderParameter('mean', 'Mean', 'The mean for the normal distribution.', False), DataProviderParameter( 'stdev', 'Standard deviation', 'The standard deviation for the ' 'normal distribution.', False) ] return parameters
def getParametersList(cls): parameters = super(SequenceIntegerProvider, cls).getParametersList()[:] parameters += [ DataProviderParameter( 'name', 'The sequence name', 'The name of the sequence. By providing a name, ' 'multiple providers can extract values from the ' 'same sequence.', True), DataProviderParameter('start', 'Start value', 'The first value to return.', False), DataProviderParameter('step', 'Step', 'The increment step for the sequence.', False) ] return parameters
def getParametersList(cls): parameters = (super(RandomNormalDistributionDateTimeProvider, cls).getParametersList()[:]) parameters += [ DataProviderParameter('mean_year', 'Mean year', 'Defaults to the current year', False), DataProviderParameter('mean_month', 'Mean month', 'Defaults to the current month', False), DataProviderParameter('mean_day', 'Mean day', 'Defaults to the current day', False), DataProviderParameter( 'stdev', 'Standard deviation', 'Standard deviation expressed in days. Defaults ' 'to approximately 6 monhts', False) ] return parameters
def getParametersList(cls): parameters = (super(FixedReferenceProvider, cls).getParametersList()[:]) parameters += [ DataProviderParameter('key', 'Model key', 'The key for the referenced model.', True), ] return parameters
def getParametersList(cls): parameters = (super(RandomReferenceProvider, cls).getParametersList()[:]) parameters += [ DataProviderParameter('model_name', 'Model name', 'Choose the model type of the reference.', True), ] return parameters
def getParametersList(cls): parameters = super(RandomBooleanProvider, cls).getParametersList()[:] parameters += [ DataProviderParameter( 'chance', 'Chance for True', 'Chance (between 0 and 1) that True will be ' 'returned.', False) ] return parameters
def getParametersList(cls): parameters = (super(RandomUniformDistributionDateProvider, cls). getParametersList()[:]) parameters += [ DataProviderParameter('min_year', 'Minimum year', 'Defaults to the current year', False), DataProviderParameter('max_year', 'Maximum year', 'Defaults to the current year', False), DataProviderParameter('min_month', 'Minimum month', 'Defaults to the current month', False), DataProviderParameter('max_month', 'Maximum month', 'Defaults to the current month', False), DataProviderParameter('min_day', 'Minimum day', 'Defaults to the current day', False), DataProviderParameter('max_day', 'Maximum day', 'Defaults to the current day', False)] return parameters