#### /print debug information to stdout # Read the dataset train_batch_size = 16 num_epochs = 4 model_save_path = 'output/training_stsbenchmark_roberta-' + datetime.now( ).strftime("%Y-%m-%d_%H-%M-%S") sts_reader = STSDataReader('datasets/stsbenchmark', normalize_scores=True) # Use XLNet for mapping tokens to embeddings word_embedding_model = models.RoBERTa('roberta-base') # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling( word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_data = SentencesDataset(sts_reader.get_examples('sts-train.csv'), model) train_dataloader = DataLoader(train_data, shuffle=True, batch_size=train_batch_size) train_loss = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") dev_data = SentencesDataset(examples=sts_reader.get_examples('sts-dev.csv'),
level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout # Read the dataset train_batch_size = 16 num_epochs = 4 model_save_path = 'output/training_stsbenchmark_bert-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") sts_reader = STSDataReader('datasets/stsbenchmark', normalize_scores=True) # Use BERT for mapping tokens to embeddings word_embedding_model = models.BERT('bert-base-uncased') # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=False, pooling_mode_first_k_token=False) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_data = SentencesDataset(sts_reader.get_examples('sts-train.csv'), model) train_dataloader = DataLoader(train_data, shuffle=True, batch_size=train_batch_size) train_loss = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") dev_data = SentencesDataset(examples=sts_reader.get_examples('sts-dev.csv'), model=model) dev_dataloader = DataLoader(dev_data, shuffle=False, batch_size=train_batch_size) evaluator = EmbeddingSimilarityEvaluator(dev_dataloader)