def test_rgs(): time_limit = 60 print('==> Start to evaluate with Budget %d' % time_limit) ensemble_method = 'bagging' eval_type = 'holdout' boston = load_boston() X, y = boston.data, boston.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) dm = DataManager(X_train, y_train) train_data = dm.get_data_node(X_train, y_train) test_data = dm.get_data_node(X_test, y_test) save_dir = './data/eval_exps/soln-ml' if not os.path.exists(save_dir): os.makedirs(save_dir) rgs = Regressor(metric='mse', ensemble_method=ensemble_method, enable_meta_algorithm_selection=False, evaluation=eval_type, time_limit=time_limit, output_dir=save_dir) rgs.fit(train_data) print(rgs.summary()) pred = rgs.predict(test_data) print(mean_squared_error(test_data.data[1], pred)) shutil.rmtree(save_dir)
def main(): ensemble_method = None time_limit = 120 print('==> Start to evaluate with Budget %d' % time_limit) eval_type = 'holdout' boston = load_boston() X, y = boston.data, boston.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) dm = DataManager(X_train, y_train) train_data = dm.get_data_node(X_train, y_train) test_data = dm.get_data_node(X_test, y_test) save_dir = './data/eval_exps/soln-ml' if not os.path.exists(save_dir): os.makedirs(save_dir) rgs = Regressor(metric='mse', ensemble_method=ensemble_method, evaluation=eval_type, time_limit=time_limit, output_dir=save_dir) rgs.fit(train_data) pred = rgs.predict(test_data) print(mean_squared_error(test_data.data[1], pred))
ensemble_method = args.ens_method if ensemble_method == 'none': ensemble_method = None print('==> Start to evaluate with Budget %d' % time_limit) boston = load_boston() X, y = boston.data, boston.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) dm = DataManager(X_train, y_train) train_data = dm.get_data_node(X_train, y_train) test_data = dm.get_data_node(X_test, y_test) save_dir = './data/eval_exps/soln-ml' if not os.path.exists(save_dir): os.makedirs(save_dir) rgs = Regressor(metric='mse', dataset_name='boston', ensemble_method=ensemble_method, evaluation=eval_type, time_limit=time_limit, output_dir=save_dir, random_state=1, n_jobs=n_jobs) rgs.fit(train_data) pred = rgs.predict(test_data) print(mean_squared_error(test_data.data[1], pred))