コード例 #1
0
def apply_algorithm(traj, D, times, anchors, method='ours'):
    """
    Apply method to given measurements.

    :return: Chat, points, indices
        Chat contains the trajectory fitted to the measurements.
        points 

    """
    if method == 'ours-weighted':
        basis = traj.get_basis(times=times)
        Chat = trajectory_recovery(D, anchors, basis, weighted=True)
        return Chat, None, None
    elif method == 'ours':
        basis = traj.get_basis(times=times)
        Chat = trajectory_recovery(D, anchors, basis, weighted=False)
        return Chat, None, None
    elif method == 'srls':
        indices = range(D.shape[0])[traj.dim + 2::3]
        points, indices = pointwise_srls(D, anchors, traj, indices)
        times = np.array(times)[indices]
        Chat = None
        if points.shape[0] >= traj.n_complexity:
            Chat = fit_trajectory(points.T, times=times, traj=traj)
        else:
            print(f'Warning in apply_algorithm(srls): cannot fit trajectory to points of shape {points.shape}.')
        return Chat, points, indices
    elif method == 'rls':
        indices = range(D.shape[0])[traj.dim + 2::3]
        grid = get_grid(anchors, grid_size=0.5)
        points, indices = pointwise_rls(D, anchors, traj, indices, grid=grid)
        times = np.array(times)[indices]
        Chat = None
        if points.shape[0] >= traj.n_complexity:
            Chat = fit_trajectory(points.T, times=times, traj=traj)
        else:
            print(f'Warning in apply_algorithm(rls): cannot fit trajectory to points of shape {points.shape}.')
        return Chat, points, indices
    elif method == 'lm-ellipse':
        basis = traj.get_basis(times=times)
        c0 = init_lm(traj.coeffs, method='ellipse').flatten()
        Chat = least_squares_lm(D, anchors, basis, c0, cost='simple', jacobian=False)
        return Chat, None, None
    elif method == 'lm-line':
        basis = traj.get_basis(times=times)
        c0 = init_lm(traj.coeffs, method='line').flatten()
        Chat = least_squares_lm(D, anchors, basis, c0, cost='simple', jacobian=False)
        return Chat, None, None
    elif method == 'lm-ours-weighted':
        basis = traj.get_basis(times=times)
        c0 = trajectory_recovery(D, anchors, basis, weighted=True)
        Chat = None
        if c0 is not None:
            c0 = c0.flatten()
            Chat = least_squares_lm(D, anchors, basis, c0, cost='simple', jacobian=False)
        return Chat, None, None
    else:
        raise ValueError(method)
コード例 #2
0
def create_complexities(traj, D, times, anchors, list_complexities):
    """ Evaluate our algorithm and srls, srls for different complexities.

    Used to create Figure 7, first row, in Relax and Recover paper.
    
    """
    grid = get_grid(anchors, grid_size=0.5)
    results = pd.DataFrame(columns=['method', 'result', 'n_complexity'])
    num_seeds = 3
    for n_complexity in list_complexities:
        traj.set_n_complexity(n_complexity)

        basis = traj.get_basis(times=times)

        Chat = trajectory_recovery(D, anchors[:2, :], basis, weighted=True)

        results.loc[len(results), :] = dict(n_complexity=n_complexity,
                                            method='ours-weighted',
                                            result=Chat)

        indices = range(D.shape[0])[traj.dim + 2::3]
        p_rls, __ = pointwise_rls(D, anchors, traj, indices, grid)
        p_srls, __ = pointwise_srls(D, anchors, traj, indices)

        results.loc[len(results), :] = dict(n_complexity=n_complexity,
                                            method='srls',
                                            result=p_srls)
        results.loc[len(results), :] = dict(n_complexity=n_complexity,
                                            method='rls',
                                            result=p_rls)
    return results
コード例 #3
0
def plot_complexities_old(traj,
                          D,
                          times,
                          anchors,
                          full_df,
                          list_complexities,
                          srls=False,
                          rls=True):
    if rls:
        grid = get_grid(anchors, grid_size=0.5)

    fig, axs = plt.subplots(1,
                            len(list_complexities),
                            sharex=True,
                            sharey=True)
    for ax, n_complexity in zip(axs, list_complexities):
        traj.set_n_complexity(n_complexity)
        basis = traj.get_basis(times=times)

        Chat = trajectory_recovery(D, anchors[:2, :], basis, weighted=True)

        traj.set_coeffs(coeffs=Chat)

        traj.plot_pretty(times=times, color="C0", label='ours', ax=ax)
        ax.plot(full_df.px,
                full_df.py,
                color='black',
                ls=':',
                linewidth=1.,
                label='GPS')
        ax.set_title('K = {}'.format(traj.n_complexity))

        remove_ticks(ax)
        i = 1
        if srls:
            indices = range(D.shape[0])[::3]
            points, used_indices = pointwise_srls(D, anchors, traj, indices)
            label = 'SRLS'
            for x in points:
                ax.scatter(*x, color=f'C{i}', label=label, s=4.0)
                label = None
            i += 1

        if rls:
            indices = range(D.shape[0])[traj.dim + 2::3]
            points, used_indices = pointwise_rls(D, anchors, traj, indices,
                                                 grid)
            label = 'RLS'
            for x in points:
                ax.scatter(*x, color=f'C{i}', label=label, s=4.0)
                label = None

    add_scalebar(axs[0], 20, loc='lower left')
    return fig, axs
コード例 #4
0
def create_subsample(traj, D, times, anchors, n_measurements_list):
    """ Evaluate our algorithm and srls, srls for different numbers of measurements.

    Used to create Figure 7, second row, in Relax and Recover paper.
    
    """
    grid = get_grid(anchors, grid_size=0.5)
    results = pd.DataFrame(columns=['method', 'result', 'n_measurements'])
    num_seeds = 3
    for n_measurements in n_measurements_list:
        for seed in range(num_seeds):
            np.random.seed(seed)
            indices = np.random.choice(D.shape[0],
                                       n_measurements,
                                       replace=False)
            D_small = D[indices, :]

            times_small = np.array(times)[indices]
            basis_small = traj.get_basis(times=times_small)
            Chat = trajectory_recovery(D_small,
                                       anchors[:2, :],
                                       basis_small,
                                       weighted=True)

            results.loc[len(results), :] = dict(n_measurements=n_measurements,
                                                method='ours-weighted',
                                                result=Chat)

        p_rls, __ = pointwise_rls(D, anchors, traj, indices, grid)

        p_srls, __ = pointwise_srls(D, anchors, traj, indices)
        results.loc[len(results), :] = dict(n_measurements=n_measurements,
                                            method='srls',
                                            result=p_srls)
        results.loc[len(results), :] = dict(n_measurements=n_measurements,
                                            method='rls',
                                            result=p_rls)
    return results
コード例 #5
0
    def test_combination(self):
        """ Test that if we do our method first
        and then apply LM with split method, we do not
        change the result.
        """
        sigma = 0.01
        tol = 1e-3  # found empirically.
        for i in range(3):  # works up to 10, but quite slow.
            self.set_measurements(seed=i)
            D_noisy = add_noise(self.D_topright, noise_sigma=sigma)

            x0 = trajectory_recovery(D_noisy,
                                     self.anchors,
                                     self.basis,
                                     weighted=False)
            x1 = least_squares_lm(D_noisy,
                                  self.anchors,
                                  self.basis,
                                  x0=x0.reshape((-1, )),
                                  cost='split',
                                  jacobian=False,
                                  verbose=VERBOSE)
            assert np.linalg.norm(
                x0 - x1) < tol, f'for {i}: {np.linalg.norm(x0 - x1)}'
コード例 #6
0
def run_simulation(parameters, outfolder=None, solver=None, verbose=False):
    """ Run simulation. 

    :param parameters: Can be either the name of the folder where parameters.json 
    is stored, or a new dict of parameters.

    """
    if type(parameters) == str:
        fname = parameters + 'parameters.json'
        parameters = read_params(fname)
        print('read parameters from file {}.'.format(fname))

    elif type(parameters) == dict:
        parameters = parameters

        # if we are trying new parameters and saving in a directory that already exists,
        # we need to make sure that the saved parameters are actually the same.
        if outfolder is not None:
            try:
                parameters_old = read_params(outfolder + 'parameters.json')
                parameters['time'] = parameters_old['time']
                assert parameters == parameters_old, 'found conflicting parameters file: {}'.format(
                    outfolder + 'parameters.json')
            except FileNotFoundError:
                print('no conflicting parameters file found.')
            except AssertionError as error:
                raise (error)
    else:
        raise TypeError('parameters needs to be folder name or dictionary.')

    if 'noise_to_square' not in parameters:
        parameters['noise_to_square'] = False

    if 'measure_distances' not in parameters:
        parameters['measure_distances'] = False

    if 'sampling_strategy' not in parameters:
        parameters['sampling_strategy'] = 'uniform'

    complexities = parameters['complexities']
    anchors = parameters['anchors']
    positions = parameters['positions']
    n_its = parameters['n_its']
    noise_sigmas = parameters['noise_sigmas']
    success_thresholds = parameters['success_thresholds']
    assert len(success_thresholds) == len(noise_sigmas)

    if parameters['sampling_strategy'] == 'single_time':
        max_measurements = max(positions)
    else:
        max_measurements = max(positions) * max(anchors)

    successes = np.full((len(complexities), len(anchors), len(positions),
                         len(noise_sigmas), max_measurements), np.nan)
    errors = np.full(successes.shape, np.nan)
    relative_errors = np.full(successes.shape, np.nan)
    absolute_errors = np.full(successes.shape, np.nan)
    num_not_solved = np.full(successes.shape, np.nan)
    num_not_accurate = np.full(successes.shape, np.nan)
    squared_distances = []

    for c_idx, n_complexity in enumerate(complexities):
        print('n_complexity', n_complexity)

        for a_idx, n_anchors in enumerate(anchors):
            print('n_anchors', n_anchors)

            for p_idx, n_positions in enumerate(positions):
                print('n_positions', n_positions)

                if parameters['sampling_strategy'] == 'single_time':
                    n_measurements = n_positions
                else:
                    n_measurements = n_positions * n_anchors
                for m_idx, n_missing in enumerate(range(n_measurements)):
                    if verbose:
                        print('measurements idx', m_idx)

                    for noise_idx, noise_sigma in enumerate(noise_sigmas):
                        indexes = np.s_[c_idx, a_idx, p_idx, noise_idx, m_idx]
                        if verbose:
                            print("noise", noise_sigma)

                        # set all values to 0 since we have visited them.
                        if np.isnan(successes[indexes]):
                            successes[indexes] = 0.0
                        if np.isnan(num_not_solved[indexes]):
                            num_not_solved[indexes] = 0.0
                        if np.isnan(num_not_accurate[indexes]):
                            num_not_accurate[indexes] = 0.0

                        for _ in range(n_its):

                            trajectory = Trajectory(n_complexity, dim=DIM)
                            anchors_coord = create_anchors(DIM, n_anchors)
                            trajectory.set_coeffs(seed=None)

                            basis, D_topright = get_measurements(
                                trajectory,
                                anchors_coord,
                                n_samples=n_positions)
                            distances = np.sqrt(D_topright)
                            D_topright = add_noise(
                                D_topright, noise_sigma,
                                parameters["noise_to_square"])
                            mask = create_mask(
                                n_positions,
                                n_anchors,
                                strategy=parameters['sampling_strategy'],
                                n_missing=n_missing)
                            if parameters['measure_distances']:
                                squared_distances.extend(
                                    D_topright.flatten().tolist())
                            D_topright = np.multiply(D_topright, mask)

                            try:
                                assert p.full_rank_condition(
                                    np.sort(np.sum(mask, axis=0))[::-1],
                                    DIM + 1, n_complexity), "insufficient rank"
                                if (solver is None) or (
                                        solver
                                        == "semidef_relaxation_noiseless"):
                                    X = semidef_relaxation_noiseless(
                                        D_topright,
                                        anchors_coord,
                                        basis,
                                        chosen_solver=cvxpy.CVXOPT)
                                    P_hat = X[:DIM, DIM:]
                                elif solver == 'trajectory_recovery':
                                    P_hat = trajectory_recovery(
                                        D_topright, anchors_coord, basis)
                                elif solver == 'weighted_trajectory_recovery':
                                    P_hat = trajectory_recovery(D_topright,
                                                                anchors_coord,
                                                                basis,
                                                                weighted=True)
                                else:
                                    raise ValueError(solver)

                                # calculate reconstruction error with respect to distances
                                trajectory_estimated = Trajectory(coeffs=P_hat)
                                _, D_estimated = get_measurements(
                                    trajectory_estimated,
                                    anchors_coord,
                                    n_samples=n_positions)
                                estimated_distances = np.sqrt(D_estimated)

                                robust_add(
                                    errors, indexes,
                                    np.linalg.norm(P_hat - trajectory.coeffs))
                                robust_add(
                                    relative_errors, indexes,
                                    np.linalg.norm(
                                        (distances - estimated_distances) /
                                        (distances + 1e-10)))
                                robust_add(
                                    absolute_errors, indexes,
                                    np.linalg.norm(distances -
                                                   estimated_distances))

                                assert not np.linalg.norm(
                                    P_hat - trajectory.coeffs
                                ) > success_thresholds[noise_idx]

                                robust_increment(successes, indexes)

                            except cvxpy.SolverError:
                                logging.info(
                                    "could not solve n_positions={}, n_missing={}"
                                    .format(n_positions, n_missing))
                                robust_increment(num_not_solved, indexes)

                            except ZeroDivisionError:
                                logging.info(
                                    "could not solve n_positions={}, n_missing={}"
                                    .format(n_positions, n_missing))
                                robust_increment(num_not_solved, indexes)

                            except np.linalg.LinAlgError:
                                robust_increment(num_not_solved, indexes)

                            except AssertionError as e:
                                if str(e) == "insufficient rank":
                                    robust_increment(num_not_solved, indexes)
                                else:
                                    logging.info(
                                        "result not accurate n_positions={}, n_missing={}"
                                        .format(n_positions, n_missing))
                                    robust_increment(num_not_accurate, indexes)

                            errors[indexes] = errors[indexes] / (
                                n_its - num_not_solved[indexes])
                            relative_errors[indexes] = relative_errors[
                                indexes] / (n_its - num_not_solved[indexes])

    results = {
        'successes': successes,
        'num-not-solved': num_not_solved,
        'num-not-accurate': num_not_accurate,
        'errors': errors,
        'relative-errors': relative_errors,
        'absolute-errors': absolute_errors,
        'distances': squared_distances
    }

    if outfolder is not None:
        print('Done with simulation. Saving results...')

        parameters['time'] = time.time()

        if not os.path.exists(outfolder):
            os.makedirs(outfolder)

        save_params(outfolder + 'parameters.json', **parameters)
        save_results(outfolder + 'result_{}_{}', results)
    else:
        return results
コード例 #7
0
def build_up_algorithm(D, anchors, basis, times, eps=1, verbose=False):
    """ Build-up algorithm for trajectory estimation. 
    
    Build up different trajectories as long as measurements "fit". When they 
    stop fitting (see eps parameter), start a new trajectory.

    :param D: measurement matrix with squared distances (N x M)
    :param anchors: anchor coordinates (dim x M)
    :param basis: basis vectors (K x N)
    :param times: list of measurement times (length N)

    :param eps: error threshold for starting new trajectory.

    """

    verify_dimensions(D, anchors, basis, times)

    C_k = None
    tk = []

    D_k = np.empty((0, D.shape[1]))
    basis_k = np.empty((basis.shape[0], 0))

    C_list = []
    t_list = []

    def g(C_k):
        r_n = C_k.dot(f_n).reshape((ams.shape[0], 1))
        dist_estimates = np.linalg.norm(ams - r_n, axis=0)
        distances = np.sqrt(d_mn_row.flatten()[d_mn_row.flatten() > 0])
        return np.sum(np.abs(dist_estimates - distances)) / len(
            distances)  # MAE

    for d_mn_row, t_n, f_n in zip(D, times, basis.T):
        d_mn_row = d_mn_row.reshape((1, -1))
        ams = anchors[:, d_mn_row[0] > 0]
        if C_k is None or g(C_k) <= eps:
            D_k = np.r_[D_k, d_mn_row]
            basis_k = np.c_[basis_k, f_n]
            tk.append(t_n)
            try:
                C_test = trajectory_recovery(D_k, anchors, basis_k)
                assert C_test is not None
                # TODO find a sensible general threshold here.
                assert g(C_test) < 2 * eps
                C_k = C_test
                # We need this somehow for numercial reasons.
                # Otherwise sometimes the tests fail because -0. != 0.
                C_k[np.abs(C_k) <= 1e-10] = 0.0
            except AssertionError as e:
                if verbose:
                    print(
                        'skipping {:.2f} because only {} measurements.'.format(
                            t_n, len(np.array(tk))))
            except np.linalg.LinAlgError:
                if verbose:
                    print('skipping {:.2f} because failed'.format(t_n))

        elif (C_k is not None) and g(C_k) > eps:
            if verbose:
                print('changing to new trajectory, because error is {:.4f}'.
                      format(g(C_k)))

            basis_k = f_n
            D_k = d_mn_row

            C_list.append(C_k)
            t_list.append(tk)

            tk = [t_n]
            C_k = None

    if C_k is not None:
        C_list.append(C_k)
        t_list.append(tk)
    return C_list, t_list
コード例 #8
0
def averaging_algorithm(D,
                        anchors,
                        basis,
                        times,
                        t_window=1.0,
                        n_times=None,
                        verbose=False):
    """ Iteratively compute estimates over fixed time window.

    :param D: measurement matrix with squared distances (N x M)
    :param anchors: anchor coordinates (dim x M)
    :param basis: basis vectors (K x N)
    :param times: list of measurement times (length N)

    :param t_window: width of fixed time window. 

    """
    if type(times) == list:
        times = np.array(times)

    verify_dimensions(D, anchors, basis, times)

    D_k = np.empty((0, D.shape[1]))
    basis_k = np.empty((basis.shape[0], 0))
    C_list = []
    t_list = []

    # make sure we always have overlap
    if n_times is None:
        t_start = np.arange(times[0], times[-1], step=t_window / 2)
    else:
        t_start = np.linspace(times[0], times[-1], n_times)

    for t_s in t_start:
        tk = times[(times >= t_s) & (times < t_s + t_window)]
        for t_n in tk:
            idx = np.where(times == t_n)[0]

            d_mn_row = D[idx, :]
            f_n = basis[:, idx]

            D_k = np.r_[D_k, d_mn_row]
            basis_k = np.c_[basis_k, f_n]

        try:
            C_k = trajectory_recovery(D_k, anchors, basis_k)
            # We need this somehow for numercial reasons.
            # Otherwise sometimes the tests fail because -0. != 0.
            C_k[np.abs(C_k) <= 1e-10] = 0.0
            C_list.append(C_k)
        except AssertionError:
            if verbose:
                print('skipping {:.2f} because only {} measurements.'.format(
                    t_s, len(np.array(tk))))
        except np.linalg.LinAlgError:
            if verbose:
                print('skipping {:.2f} because failed.'.format(t_s))
        except ValueError:
            raise

        D_k = np.empty((0, D.shape[1]))
        basis_k = np.empty((basis.shape[0], 0))
        t_list.append(tk)
    return C_list, t_list
コード例 #9
0
def plot_subsample_old(traj,
                       D,
                       times,
                       anchors,
                       full_df,
                       n_measurements_list,
                       srls=False,
                       rls=True):
    import hypothesis as h

    basis = traj.get_basis(times=times)
    fig, axs = plt.subplots(1,
                            len(n_measurements_list),
                            sharex=True,
                            sharey=True)

    if rls:
        grid = get_grid(anchors, grid_size=0.5)

    alpha = 1.0
    num_seeds = 3
    for ax, n_measurements in zip(axs, n_measurements_list):
        label = 'ours'
        coeffs = np.empty([traj.dim, traj.n_complexity, 0])
        colors = {0: 0, 1: 2, 2: 3}
        for seed in range(num_seeds):
            np.random.seed(seed)
            indices = np.random.choice(D.shape[0],
                                       n_measurements,
                                       replace=False)

            D_small = D[indices, :]
            mask = (D_small > 0).astype(np.float)

            p = np.sort(np.sum(mask, axis=0))[::-1]
            if not h.limit_condition(list(p), traj.dim + 1, traj.n_complexity):
                print("insufficient rank")

            times_small = np.array(times)[indices]
            basis_small = traj.get_basis(times=times_small)

            Chat = trajectory_recovery(D_small,
                                       anchors[:2, :],
                                       basis_small,
                                       weighted=True)

            coeffs = np.dstack([coeffs, Chat])
            traj.set_coeffs(coeffs=Chat)

            traj.plot_pretty(times=times,
                             color='C{}'.format(colors[seed]),
                             ax=ax,
                             alpha=alpha)

        Chat_avg = np.mean(coeffs, axis=2)
        traj.set_coeffs(coeffs=Chat_avg)
        traj.plot_pretty(times=times, color='C0', label=label, ax=ax)

        i = 1
        if srls:
            points, used_indices = pointwise_srls(D, anchors, traj, indices)
            label = 'SRLS'
            for x in points:
                ax.scatter(*x, color=f'C{i}', label=label, s=4.0)
                label = None
            i += 1
        if rls:
            points, used_indices = pointwise_rls(D, anchors, traj, indices,
                                                 grid)
            label = 'RLS'
            for x in points:
                ax.scatter(*x, color=f'C{i}', label=label, s=4.0)
                label = None

        ax.plot(full_df.px,
                full_df.py,
                ls=':',
                linewidth=1.,
                color='black',
                label='GPS')
        remove_ticks(ax)
        ax.set_title('N = {}'.format(n_measurements), y=-0.22)
    add_scalebar(axs[0], 20, loc='lower left')
    return fig, axs