コード例 #1
0
    def testMinimalRun(self):
        x = basic.TrainableVariable(shape=(),
                                    initializers={'w':
                                                  tf.ones_initializer()})()
        x2 = x**2.0
        min_value = 0.5
        constr = optimization_constraints.OptimizationConstraints().add(
            x > min_value)

        self.assertFalse(constr._is_connected)
        loss = moving_average.MovingAverage()(x2 + tf.random.normal(
            (), stddev=1.0)) + constr()

        self.assertTrue(constr._is_connected)
        with self.assertRaisesRegexp(ValueError,
                                     'Cannot add further constraints'):
            constr.add(x > min_value)
        with self.assertRaisesRegexp(ValueError,
                                     'Cannot add further constraints'):
            constr.add_geq(x, min_value)
        with self.assertRaisesRegexp(ValueError,
                                     'Cannot add further constraints'):
            constr.add_leq(min_value < x)

        opt = tf.train.AdamOptimizer(1e-2, beta1=0.0)
        update = opt.minimize(loss)
        with tf.control_dependencies([update]):
            x2 = tf.identity(x2)

        with tf.train.MonitoredSession() as sess:
            for _ in range(500):
                v, _ = sess.run([x2, update])
        self.assertAllClose(v, min_value**2)
コード例 #2
0
  def testOpIdentification(self, mocked_add_leq, mocked_add_geq):
    calls_to_add_leq = [0]
    def mock_add_leq(*args, **kwargs):
      del args
      del kwargs
      calls_to_add_leq[0] += 1
    mocked_add_leq.side_effect = mock_add_leq

    calls_to_add_geq = [0]
    def mock_add_geq(*args, **kwargs):
      del args
      del kwargs
      calls_to_add_geq[0] += 1
    mocked_add_geq.side_effect = mock_add_geq

    cons = optimization_constraints.OptimizationConstraints()
    lhs = tf.zeros_like(1.0)
    rhs = tf.ones_like(1.0)

    self.assertEqual(calls_to_add_leq[0], 0)
    self.assertEqual(calls_to_add_geq[0], 0)
    cons.add(lhs < rhs)
    self.assertEqual(calls_to_add_leq[0], 1)
    self.assertEqual(calls_to_add_geq[0], 0)
    cons.add(lhs <= rhs)
    self.assertEqual(calls_to_add_leq[0], 2)
    self.assertEqual(calls_to_add_geq[0], 0)
    cons.add(lhs > rhs)
    self.assertEqual(calls_to_add_geq[0], 1)
    self.assertEqual(calls_to_add_leq[0], 2)
    cons.add(lhs >= rhs)
    self.assertEqual(calls_to_add_geq[0], 2)
    self.assertEqual(calls_to_add_leq[0], 2)
コード例 #3
0
 def testValidRangeOverrides(self):
     cons = optimization_constraints.OptimizationConstraints()
     lhs = tf.zeros_like(1.0)
     rhs = tf.ones_like(1.0)
     valid_range = (1.0, 2.0)
     cons.add(lhs < rhs, initializer=3.0, valid_range=valid_range)()
     with tf.train.MonitoredSession() as sess:
         lag_mul = sess.run(cons.lagrange_multipliers[0])
     self.assertAllClose(lag_mul, valid_range[1])
コード例 #4
0
 def testLagrangeMultInit(self, initializer, exp_lag_mul):
     cons = optimization_constraints.OptimizationConstraints()
     lhs = tf.zeros_like(1.0)
     rhs = tf.ones_like(1.0)
     cons.add(lhs > rhs, initializer=initializer)()
     l = cons.lagrange_multipliers[0]
     with tf.train.MonitoredSession() as sess:
         lag_mul = sess.run(l)
     self.assertAllClose(lag_mul, exp_lag_mul)
コード例 #5
0
 def testRateOverrides(self, mocked_parametrized):
     mocked_parametrized.side_effect = (
         lambda x, rate: scale_gradient.scale_gradient(x, -rate))
     rate = 7.3
     cons = optimization_constraints.OptimizationConstraints()
     lhs = tf.zeros_like(1.0)
     rhs = tf.ones_like(1.0)
     x = cons.add(lhs < rhs, rate=rate)()
     v = tf.all_variables()[0]
     dxdl = tf.gradients(x, v)
     with tf.train.MonitoredSession() as sess:
         grads = sess.run(dxdl)
     self.assertAllClose(grads[0], rate)