コード例 #1
0
    def __init__(self):
        super(PeopleObjectTrackerNode, self).__init__()

        # init the node
        rospy.init_node('people_object_tracker', anonymous=False)

        # Get the parameters
        (detection_topic, tracker_topic, cost_threshold, \
            max_age, min_hits) = \
            self.get_parameters()

        self._bridge = CvBridge()

        self.tracker = sort.Sort(max_age=max_age, min_hits=min_hits)

        self.cost_threshold = cost_threshold

        # Advertise the result of Object Tracker
        self.pub_trackers = rospy.Publisher(tracker_topic, \
            DetectionArray, queue_size=1)

        self.sub_detection = rospy.Subscriber(detection_topic, \
            DetectionArray,\
            self.detection_callback)

        # spin
        rospy.spin()
コード例 #2
0
def main():
	global tracker
	global msg
	msg = IntList()
	global inverse_cam_matrix, cam_to_quad, tcam
    #Initialize ROS node
	rospy.init_node('sort_tracker', anonymous=False)
	rate = rospy.Rate(10)

	# Get the parameters
	global camera_parameters
	(camera_topic, detection_topic, tracker_topic, cost_threshold, max_age, min_hits,camera_parameters) = get_parameters()
	inverse_cam_matrix = np.linalg.inv(np.reshape(np.array(camera_parameters['camera_matrix']['data']), (camera_parameters['camera_matrix']['rows'],camera_parameters['camera_matrix']['cols'])))
	cam_to_quad = np.linalg.inv(np.reshape(np.array(camera_parameters['rotation']),(3,3)))
	tcam = np.reshape(np.array(camera_parameters['translation']),(3,1))
	tracker = sort.Sort(max_age=max_age, min_hits=min_hits) #create instance of the SORT tracker
	cost_threshold = cost_threshold
	#Subscribe to image topic
	image_sub = rospy.Subscriber(camera_topic,Image,callback_image)
	#Subscribe to darknet_ros to get BoundingBoxes from YOLOv3
	sub_detection = rospy.Subscriber(detection_topic, BoundingBoxes , callback_det)
	#Publish results of object tracking
	pub_trackers = rospy.Publisher(tracker_topic, IntList, queue_size=10)
	#print(msg) #Testing msg that is published
	#pub_trackers.publish(msg)
	sub_odometry = rospy.Subscriber("Odometry",Odometry,callback_odom) 
	global pub_bbposes
	pub_bbposes = rospy.Publisher("BBposes",BBPoses,queue_size=10)
	rospy.spin()
コード例 #3
0
    def SORT(self, predictions):
        qtt_frames = len(predictions)
        tracker = sort.Sort()

        tracked_vehicles_trajectory = {}  # Trajetória de cada ID identificado
        vehicles_on_the_frame = {}  # Veículos que estão presentes no frame X

        # Ids e bounding boxes preditas pelo tracking
        mot_labels = [[0, 0, 0, 0, 0, 0, 0] for _ in range(qtt_frames + 1)]

        for frame_number in range(1, qtt_frames + 1):

            bboxes_atual = predictions[frame_number][:]
            # Formatar a lista para alimentar o Sort
            # np.array( [ [x1,y1,x2,y2,score1], [x3,y3,x4,y4,score2], ... ] )

            if len(bboxes_atual) == 0:
                bboxes_atual = np.zeros(
                    (0, 5))  # Requerido pelo Algoritmo Sort
            else:
                for idx in range(len(bboxes_atual)):
                    x1, y1, w, h, classe = bboxes_atual[idx]
                    x2 = x1 + w
                    y2 = y1 + h
                    score = np.random.randint(
                        50,
                        100) / 100  # Temporariamente setar score como random.
                    bboxes_atual[idx] = [x1, y1, x2, y2, score, classe]

                # Numpy array requerido pelo Sort
                bboxes_atual = np.array(bboxes_atual)

                # Analisar o frame atual e identificar os bounding boxes id (update SORT)
                track_bbs_ids = tracker.update(bboxes_atual[:, :-1])
                this_frame_ids = track_bbs_ids[:, -1]

                # Passar as coordenadas para o padrão: [frame,x,y,w,h,idx]
                newboxes_list = [[0, 0, 0, 0, 0, 0, 0]
                                 for _ in range(len(track_bbs_ids))]

                for i, newbox in enumerate(track_bbs_ids):
                    x1, y1, x2, y2, idx = newbox
                    x, y, w, h = x1, y1, abs(x2 - x1), abs(y2 - y1)
                    x, y, w, h, idx = int(x), int(y), int(w), int(h), int(idx)
                    newboxes_list[i] = [frame_number, x, y, w, h, classe, idx]

                    # Guardar a trajetória do centro do veículo IDx
                    xc, yc = int(x + w / 2), int(y + h / 2)
                    if idx in tracked_vehicles_trajectory:
                        tracked_vehicles_trajectory[idx].append(
                            (frame_number, xc, yc))
                    else:
                        tracked_vehicles_trajectory[idx] = [(frame_number, xc,
                                                             yc)]

                # Atualizar as variáveis
                vehicles_on_the_frame[frame_number] = this_frame_ids
                mot_labels[frame_number] = newboxes_list[:]

        return mot_labels, tracked_vehicles_trajectory, vehicles_on_the_frame
コード例 #4
0
def main():
    global tracker
    global msg
    msg = IntList()
    while not rospy.is_shutdown():
        #Initialize ROS node
        rospy.init_node('sort_tracker', anonymous=False)
        rate = rospy.Rate(10)
        # Get the parameters
        (camera_topic, detection_topic, tracker_topic, cost_threshold, max_age,
         min_hits) = get_parameters()
        tracker = sort.Sort(
            max_age=max_age,
            min_hits=min_hits)  #create instance of the SORT tracker
        cost_threshold = cost_threshold
        #Subscribe to image topic
        image_sub = rospy.Subscriber(camera_topic, Image, callback_image)
        #Subscribe to darknet_ros to get BoundingBoxes from YOLOv3
        sub_detection = rospy.Subscriber(detection_topic, BoundingBoxes,
                                         callback_det)
        #Publish results of object tracking
        pub_trackers = rospy.Publisher(tracker_topic, IntList, queue_size=10)
        #print(msg) #Testing msg that is published
        #pub_trackers.publish(msg)
        rate.sleep()
        rospy.spin()
コード例 #5
0
def main():
    global tracker
    global msg
    global detections
    global total_time
    global total_frames
    global start_time
    global cycle_time
    global tracker_id
    global iou_threshold
    global display
    global detection_event
    display = False
    total_frames = 0
    detection_event = False

    # holds tracker id
    counter = IntList()
    while not rospy.is_shutdown():
        #Initialize ROS node
        # frame +=1
        rospy.init_node('sort_tracker', anonymous=False)

        # Get the parameters
        (queue_size, camera_topic, detection_topic, tracker_topic,
         cost_threshold, iou_threshold, display, max_age, min_hits,
         fps) = get_parameters()
        cost_threshold = cost_threshold

        # loop twice per frame
        rate = rospy.Rate(3)

        tracker = sort.Sort(
            max_age=max_age,
            min_hits=min_hits)  #create instance of the SORT tracker

        #Subscribe to darknet_ros to get BoundingBoxes from yolov3-detections
        sub_detection = rospy.Subscriber(detection_topic, BoundingBoxes,
                                         callback_det)

        #Subscribe to image topic
        image_sub = rospy.Subscriber(camera_topic, Image, callback_image)

        #Publish results of object tracking
        # pub_trackers = rospy.Publisher(tracker_topic, IntList, queue_size=queue_size)
        # print(msg)
        # 1.5 = 2
        total_frames = math.ceil(total_frames + 1 / 2)
        #pub_trackers.publish(msg)
        rate.sleep()
        rospy.spin()
コード例 #6
0
	def __init__(self):

		# Gets the necessary parameters from .yaml file
		self.loop_rate = rospy.get_param("~loop_rate")
		self.show_image = rospy.get_param("~show_image")
		self.camera_topic = rospy.get_param("~camera_topic")
		self.detection_topic = rospy.get_param("~detection_topic")
		self.tracker_topic = rospy.get_param('~tracker_topic')
		self.cost_threshold = rospy.get_param('~cost_threhold')
		self.min_hits = rospy.get_param('~min_hits')
		self.max_age = rospy.get_param('~max_age')

		self.msg = TrackedBoundingBoxes()

		global tracker
		tracker = sort.Sort(max_age=self.max_age, min_hits=self.min_hits)
		# Subscribe to image topic
		self.image_sub = rospy.Subscriber(self.camera_topic, Image, self.callback_image)
		# Subscribe to darknet_ros to get BoundingBoxes from YOLOv3
		self.sub_detection = rospy.Subscriber(self.detection_topic, BoundingBoxes, self.callback_det)
		# Publish results of object tracking
		self.pub_trackers = rospy.Publisher(self.tracker_topic, TrackedBoundingBoxes, queue_size=10)
		# keep process alive
		rospy.spin()
コード例 #7
0
ファイル: aerial_sort.py プロジェクト: skotok/aerial-tracking
import time
from sort import sort
import numpy as np

# create instance of SORT
mot_tracker = sort.Sort()

total_frames = 0
total_time = 0

# get detections
# dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
seq_dets = np.loadtxt('det_sort.csv', delimiter=',')  # load detections
with open('out_sort.csv', 'w') as out_file:
    print("Processing detections...")
    for frame in range(int(seq_dets[:, 0].max())):
        frame += 1  # detection and frame numbers begin at 1
        dets = seq_dets[seq_dets[:, 0] == frame, 2:7]
        dets[:, 2:4] += dets[:, 0:2]  # convert to [x1,y1,w,h] to [x1,y1,x2,y2]
        total_frames += 1

        start_time = time.time()
        trackers = mot_tracker.update(dets)
        cycle_time = time.time() - start_time
        total_time += cycle_time

        for d in trackers:
            print('%d,%d,%.2f,%.2f,%.2f,%.2f' %
                  (frame, d[4], d[0], d[1], d[2] - d[0], d[3] - d[1]),
                  file=out_file)
# update SORT
コード例 #8
0
def run():

    # declare global variables that can be updated globally
    global counter 
    global _current_image
    global _bridge
    global _detected_bbox
    global coordinates
    global object_class
    global dets
    global marked_image
    global _frame_seq
    global _current_image_header_seq
    global _detected_image_header_seq
    global _current_detected_image
    global tracker
    global trackers # contains tracker id, x1, y1, x2, y2, probabilitiy
    global _old_detection
    global _current_detected_image_seq
    trackers = [] # this is going to hold the state estimates of all of the trackers.
    tracker_ids = []

    _old_detection = None
    _current_detected_image_seq = -1
    _detected_image_header_seq = 0 
    _current_image_header_seq = -1
    temp_detected_image = -2
    counter = 0

    # initilize current image and detected boxes
    _current_image_buffer = []
    _detected_image_buffer = []
    _detected_image_header_seq_buffer = [] 
    _current_image_header_seq_buffer = []

    marked_image = None

    _current_image = None
    _current_detected_image = None
    # _detected_bbox_buffer = []
    _detected_bbox = None

    # setup cv2 bridge 
    _bridge = CvBridge()

    # image and point cloud subscribers
    image_topic, detection_topic, display = getParam()


    # subscribe to raw image feed
    # rospy.Subscriber(image_topic, Image, image_callback, queue_size=100)

    # subscribe to detections
    rospy.Subscriber(detection_topic, BoundingBoxes, detector_callback, queue_size=1)

    rospy.Subscriber("/darknet_ros/detection_image", Image, detected_image_callback, queue_size=1)

    

    # publish image topic with bounding boxes 
    _imagepub = rospy.Publisher('~labeled_image', Image, queue_size=1)

    # TODO publish original unmarked frame
    # _imagepub = rospy.Publisher('~original_frames', Image, queue_size=10)

    # TODO publish marked image with sort detections

    rospy.loginfo("ready to detect")

    # adjust frame rate 

    

    r = rospy.Rate(6)
    # max age is the maximum number of frames a tracker can exist by making max_age > 1 
    # you can allow it to survive without a detection, for instance if there are skip frames 
    # in this there is an expected number of skip frames, by making max_age = n, you are allowing
    # for n skip frames. 
    # min hits is the minimum number of times a tracker must be detected to survive
    
    tracker = sort.Sort(max_age = 8, min_hits=1) #create instance of the SORT tracker
    # counter = 0 
    frames = 1 

    _old_detection = rospy.wait_for_message(detection_topic, BoundingBoxes).image_header.seq
    # rospy.wait_for_message("/darknet_ros/detection_image", Image)
    while not rospy.is_shutdown():
        # _old_detection = _detected_bbox.image_header.seq
        # rospy.wait_for_message("/darknet_ros/detection_image", Image)
        
        boxes = []
        class_ids = []
        detections = 0
        dets = []
        # if frames == 1: 
        #     _old_detection = _detected_bbox.seq

        # if frames == 1: 
        #     _old_detection = _detected_bbox

        # in the form: dets.append([x_min, y_min, x_max, y_max, probability])
        # dets = np.empty((0,5))
            # only run if there is an image
        if  new_detection(_detected_bbox) and _current_detected_image is not None:

            # if frames == 1: 
            #     _old_detection = _detected_bbox.image_header.seq
            
            print("current image seq: %s", _current_detected_image_seq)
            # print("frames processed %s: " %frames)
            print("detected frame number: %s" % _detected_image_header_seq)
            # if frame < 3 : 
            #     rospy.spin()
            
            # check to see if curr detection is on the current frame
            # if _current_image_header_seq == _detected_image_header_seq:
                # print("image seq are the same")
            
            try:
                # image received
                # convert image from the subscriber into an OpenCV image
                # initialize the detected image as the current frame
                # initialize our current frame 
                # marked_image = _bridge.imgmsg_to_cv2(_current_image, 
                # 'rgb8')

                marked_image = _bridge.imgmsg_to_cv2(_current_detected_image, 
                'rgb8')
                # _imagepub.publish(_bridge.cv2_to_imgmsg(marked_image, 'rgb8'))  # publish detection results
                
                # marked_image, objects = self._detector.from_image(scene)  # detect objects
                
                # _imagepub.publish(_bridge.cv2_to_imgmsg(scene, 'rgb8'))  # publish detection results

                # what if there is no bounding boxes? 
                # go through all the detections in each frame
                if _detected_bbox is not None:
                    frames +=1
                    for box in _detected_bbox.bounding_boxes:
                        # xmin, ymin, xmax, ymax = box.xmin, box.ymin, box.xmax, box.ymax
                        obj_class = box.Class
                        # update the trackers one at a time based on detection boxes ? 
                        # collect all boxes from the relevant class
                        if box.Class == "plant": 
                            # rospy.loginfo("cycle_time %s", cycle_time)
                            # [x1,y1,x2,y2] - for each object
                            # store the class ids 
                            dets.append([box.xmin, box.ymin, box.xmax, box.ymax, box.probability])
                            # class_ids.append(obj_class)
                            # detections +=
                        else: pass  # no plants in the image

                    
                    # there are no detections, you still need to update you trackers
                dets = np.array(dets) # convert for the n dimensional array
                # whether or not the detections are none, the trackers still need to be updated
                # if len(dets) == 0:
                #     rospy.loginfo("no targets detected!")
                #     # trackers = tracker.update(dets)
                # else: 
                #     rospy.loginfo("targets detected")
                    # trackers = tracker.update(dets)
                # rospy.loginfo("trackers updated based on current detections")
                trackers = tracker.update(dets)
                # print(trackers)
            
                # iterate through all the trackers
                for t in trackers:
                    # rospy.loginfo("tracker ID: %s", d[4])
                    # rospy.loginfo("tracker id: " + str(t[4]) + ": " + "info: " + str(t))
                    # _tracker_ids.append(str(t[4]))
                    str_n = str(int(t[4]))
                    if (str_n in tracker_ids) == False:
                        # print("unique id found")
                        # unique id 
                        tracker_ids.append(str_n)
                        counter +=1
                    else: pass

                    box_t = [t[0], t[1], t[2], t[3]]
                    # draw every tracker 
                    # draw_detections(box, obj_class, tracker_id, im):
                    # draw_detections(box_t, obj_class, t[4], marked_image)
                    # draw_detections(marked_image, t[4], box_t)
                    draw_detections(box_t, "plant", t[4], marked_image)
                
                print("plant count:%s"%str(counter))
                # the default case is the current frame with no writting
                _imagepub.publish(_bridge.cv2_to_imgmsg(marked_image, 'rgb8'))  # publish detection results                    
                _old_detection = _detected_bbox.image_header.seq

            except CvBridgeError as e:
                print(e)

            r.sleep() # best effort to maintain loop rate r for each frame