コード例 #1
0
    def populate(self, directory):
        '''
        Analyzes all audio files in a directory and add their fingerprint
        to the database. Writes result to disk when done.

        Args:
            directory: directory containing audio files.
        '''
        audio_files = sorted(soundfiles.find_files(directory + '/*'))

        c.notice("Reading {} files...".format(len(audio_files)))

        i = 0
        for filename in audio_files:
            i += 1
            c.write('\r\t-file ' + str(i) + ' of ' + str(len(audio_files)))
            signal = soundfiles.load_signal(filename)
            self.add(fingerprint.get_tokens(signal))
        c.write("\n")

        c.notice("Writing database to disk...")
        self.save()
        c.succes("Database written")
コード例 #2
0
    def populate(self, directory):
        '''
        Analyzes all audio files in a directory and add their fingerprint
        to the database. Writes result to disk when done.

        Args:
            directory: directory containing audio files.
        '''
        audio_files = sorted(soundfiles.find_files(directory + '/*'))

        c.notice("Reading {} files...".format(len(audio_files)))

        i = 0
        for filename in audio_files:
            i += 1
            c.write('\r\t-file ' + str(i) + ' of ' + str(len(audio_files)))
            signal = soundfiles.load_signal(filename)
            self.add(fingerprint.get_tokens(signal))
        c.write("\n")

        c.notice("Writing database to disk...")
        self.save()
        c.succes("Database written")
コード例 #3
0
ファイル: main.py プロジェクト: pverkade/WazDat
        exit()

    if args.train:
        database.populate(args.train)

    if args.f:
        if not database.read:
            c.notice('Loading database from disk...')
            database.load()
            c.succes('Loaded {} entries.'.format(database.get_size()))

        c.notice('Converting database to classifier...')
        classifier = database.as_classifier()

        c.notice('Loading \'{}\' from disk...'.format(args.f))
        signal = load_signal(args.f)
        if signal is None:
            c.fatal('This file could not be loaded')
            parser.print_help()
            exit()

        c.notice('Analyzing \'{}\'...'.format(signal.get_filename()))
        tokens = get_tokens(signal)

        c.notice("Classifying...")
        match = classifier.classify(tokens)

        if match:
            c.notice("File \'{}\' matches with database entry {}".format(
                signal.filename, match))
        else:
コード例 #4
0
ファイル: main.py プロジェクト: ArnoldSwaggernegger/WazDat
        exit()

    if args.train:
        database.populate(args.train)

    if args.f:
        if not database.read:
            c.notice('Loading database from disk...')
            database.load()
            c.succes('Loaded {} entries.'.format(database.get_size()))

        c.notice('Converting database to classifier...')
        classifier = database.as_classifier()

        c.notice('Loading \'{}\' from disk...'.format(args.f))
        signal = load_signal(args.f)
        if signal is None:
            c.fatal('This file could not be loaded')
            parser.print_help()
            exit()

        c.notice('Analyzing \'{}\'...'.format(signal.get_filename()))
        tokens = get_tokens(signal)

        c.notice("Classifying...")
        match = classifier.classify(tokens)

        if match:
            c.notice("File \'{}\' matches with database entry {}".format(
                signal.filename, match
            ))
コード例 #5
0
import soundfiles
import random
import matplotlib.pyplot as plt
import wave
import numpy as np
import os

if not os.path.exists("audio/pokemon"):
    os.makedirs("audio/pokemon")

directory = "training/pokemon/*.wav"

files = soundfiles.find_files(directory)

for f in files:
	signal = soundfiles.load_signal(f)

	'''
	initialize the suffix of the new file and the new samples
	'''
	suffix = ""
	new_samples = signal.samples

	if random.random() < 0.5:
		'''
		add noise
		'''
        new_samples += 0.05 - 0.1 * np.random.rand(len(new_samples))
        suffix += "-noise"

	if random.random() < 0.5:
コード例 #6
0
import soundfiles
import random
import matplotlib.pyplot as plt
import wave
import numpy as np
import os

if not os.path.exists("audio/pokemon"):
    os.makedirs("audio/pokemon")

directory = "training/pokemon/*.wav"

files = soundfiles.find_files(directory)

for f in files:
    signal = soundfiles.load_signal(f)
    '''
	initialize the suffix of the new file and the new samples
	'''
    suffix = ""
    new_samples = signal.samples

    if random.random() < 0.5:
     '''
		add noise
		'''
    new_samples += 0.05 - 0.1 * np.random.rand(len(new_samples))
    suffix += "-noise"

    if random.random() < 0.5:
        '''
コード例 #7
0
pokemon_nr = "103"  # "003"

filenames = [
    "training/pokemon/{}.wav".format(pokemon_nr),
    "audio/presentatie/{}-divided.wav".format(pokemon_nr),
    "audio/presentatie/{}-noise.wav".format(pokemon_nr),
    "audio/presentatie/{}-translated.wav".format(pokemon_nr),
]

n = len(filenames)

fig, ax = plt.subplots(n)

for i in xrange(n):
    filename = filenames[i]
    signal = soundfiles.load_signal(filename)
    fingerprints = fingerprint.get_fingerprints(signal, 1024, 2)

    x = [time for (time, peaks) in fingerprints for freq in peaks]
    y = [freq for (time, peaks) in fingerprints for freq in peaks]

    if "translated" in filename:
        shift = 16384 / 1024
        x = [e - shift for e in x]

    for h in xrange(128, 256, 32):
        ax[i].axhline(y=h, color="grey", alpha=0.25)

    plot = ax[i].scatter(x, y, color="red")
    ax[i].set_xlim((0, 23))
    ax[i].set_ylim((128, 256))
コード例 #8
0
print "Start testing classifier with {} files\n".format(len(filenames))

shuffle(filenames)

correct_match = 0
wrong_match = 0
no_match = 0

wrong_matches = ""
correct_matches = ""
no_matches = ""

for filename in filenames:
    print "Classifying {}".format(filename)
    signal = load_signal(filename)
    tokens = get_tokens(signal)
    match = classifier.classify(tokens)

    if match is None:
        print "-> No match found"
        no_matches += filename.split("/")[2][:-4]
        no_match += 1
    elif match.split("/")[2][:3] == filename.split("/")[2][:3]:
        print "-> Correct match found"
        correct_match += 1
        correct_matches += filename.split("/")[2][:-4]
    else:
        print "-> Wrong match found"
        wrong_matches += filename.split("/")[2][:-4]
        wrong_match += 1
コード例 #9
0
ファイル: test_classifier.py プロジェクト: pverkade/WazDat
print "Start testing classifier with {} files\n".format(len(filenames))

shuffle(filenames)

correct_match = 0
wrong_match = 0
no_match = 0

wrong_matches = ""
correct_matches = ""
no_matches = ""

for filename in filenames:
    print "Classifying {}".format(filename)
    signal = load_signal(filename)
    tokens = get_tokens(signal)
    match = classifier.classify(tokens)

    if match is None:
        print "-> No match found"
        no_matches += filename.split("/")[2][:-4]
        no_match += 1
    elif match.split("/")[2][:3] == filename.split("/")[2][:3]:
        print "-> Correct match found"
        correct_match += 1
        correct_matches += filename.split("/")[2][:-4]
    else:
        print "-> Wrong match found"
        wrong_matches += filename.split("/")[2][:-4]
        wrong_match += 1
コード例 #10
0
pokemon_nr = "103"  # "003"

filenames = [
    "training/pokemon/{}.wav".format(pokemon_nr),
    "audio/presentatie/{}-divided.wav".format(pokemon_nr),
    "audio/presentatie/{}-noise.wav".format(pokemon_nr),
    "audio/presentatie/{}-translated.wav".format(pokemon_nr)
]

n = len(filenames)

fig, ax = plt.subplots(n)

for i in xrange(n):
    filename = filenames[i]
    signal = soundfiles.load_signal(filename)
    fingerprints = fingerprint.get_fingerprints(signal, 1024, 2)

    x = [time for (time, peaks) in fingerprints for freq in peaks]
    y = [freq for (time, peaks) in fingerprints for freq in peaks]

    if "translated" in filename:
        shift = 16384 / 1024
        x = [e - shift for e in x]

    for h in xrange(128, 256, 32):
        ax[i].axhline(y=h, color="grey", alpha=0.25)

    plot = ax[i].scatter(x, y, color="red")
    ax[i].set_xlim((0, 23))
    ax[i].set_ylim((128, 256))