def _parse_ml_method(ml_method_id: str, ml_specification) -> tuple: valid_class_values = ReflectionHandler.all_nonabstract_subclass_basic_names(MLMethod, "", "ml_methods/") if type(ml_specification) is str: ml_specification = {ml_specification: {}} ml_specification = {**DefaultParamsLoader.load("ml_methods/", "MLMethod"), **ml_specification} ml_specification_keys = list(ml_specification.keys()) ParameterValidator.assert_all_in_valid_list(list(ml_specification_keys), ["model_selection_cv", "model_selection_n_folds"] + valid_class_values, "MLParser", ml_method_id) non_default_keys = [key for key in ml_specification.keys() if key not in ["model_selection_cv", "model_selection_n_folds"]] assert len(ml_specification_keys) == 3, f"MLParser: ML method {ml_method_id} was not correctly specified. Expected at least 1 key " \ f"(ML method name), got {len(ml_specification_keys) - 2} instead: " \ f"{str([key for key in non_default_keys])[1:-1]}." ml_method_class_name = non_default_keys[0] ml_method_class = ReflectionHandler.get_class_by_name(ml_method_class_name, "ml_methods/") ml_specification[ml_method_class_name] = {**DefaultParamsLoader.load("ml_methods/", ml_method_class_name, log_if_missing=False), **ml_specification[ml_method_class_name]} method, params = MLParser.create_method_instance(ml_specification, ml_method_class, ml_method_id) ml_specification[ml_method_class_name] = params method.name = ml_method_id return method, ml_specification
def parse_object(specs, valid_class_names: list, class_name_ending: str, class_path: str, location: str, key: str, builder: bool = False, return_params_dict: bool = False): class_name = ObjectParser.get_class_name(specs, valid_class_names, class_name_ending, location, key) ParameterValidator.assert_in_valid_list(class_name, valid_class_names, location, key) cls = ReflectionHandler.get_class_by_name( f"{class_name}{class_name_ending}", class_path) params = ObjectParser.get_all_params(specs, class_path, class_name, key) try: if "name" not in inspect.signature(cls.__init__).parameters.keys(): del params["name"] obj = cls.build_object( **params) if builder and hasattr(cls, "build_object") else cls( **params) except TypeError as err: raise AssertionError( f"{location}: invalid parameter {err.args[0]} when specifying parameters in {specs} " f"under key {key}. Valid parameter names are: " f"{[name for name in inspect.signature(cls.__init__).parameters.keys()]}" ) return (obj, {class_name: params}) if return_params_dict else obj
def parse(self, key: str, instruction: dict, symbol_table: SymbolTable, path: str = None) -> DatasetExportInstruction: location = "DatasetExportParser" ParameterValidator.assert_keys(list(instruction.keys()), DatasetExportParser.VALID_KEYS, location, key) valid_formats = ReflectionHandler.all_nonabstract_subclass_basic_names( DataExporter, "Exporter", 'dataset_export/') ParameterValidator.assert_all_in_valid_list( instruction["export_formats"], valid_formats, location, "export_formats") ParameterValidator.assert_all_in_valid_list( instruction["datasets"], symbol_table.get_keys_by_type(SymbolType.DATASET), location, "datasets") return DatasetExportInstruction( datasets=[ symbol_table.get(dataset_key) for dataset_key in instruction["datasets"] ], exporters=[ ReflectionHandler.get_class_by_name(f"{key}Exporter", "dataset_export/") for key in instruction["export_formats"] ], name=key)
def _parse_to_enum_instances(params, location): for key in params.keys(): class_name = DefaultParamsLoader._convert_to_camel_case(key) if ReflectionHandler.exists(class_name, location): cls = ReflectionHandler.get_class_by_name(class_name, location) params[key] = cls[params[key].upper()] return params
def import_hp_setting(config_dir: str) -> Tuple[HPSetting, Label]: config = MLMethodConfiguration() config.load(f'{config_dir}ml_config.yaml') ml_method = ReflectionHandler.get_class_by_name( config.ml_method, 'ml_methods/')() ml_method.load(config_dir) encoder = MLImport.import_encoder(config, config_dir) preprocessing_sequence = MLImport.import_preprocessing_sequence( config, config_dir) labels = list(config.labels_with_values.keys()) assert len( labels ) == 1, "MLImport: Multiple labels set in a single ml_config file." label = Label(labels[0], config.labels_with_values[labels[0]]) return HPSetting( encoder=encoder, encoder_params=config.encoding_parameters, encoder_name=config.encoding_name, ml_method=ml_method, ml_method_name=config.ml_method_name, ml_params={}, preproc_sequence=preprocessing_sequence, preproc_sequence_name=config.preprocessing_sequence_name), label
def get_class(specs, valid_class_names, class_name_ending, class_path, location, key): class_name = ObjectParser.get_class_name(specs, valid_class_names, class_name_ending, location, key) cls = ReflectionHandler.get_class_by_name( f"{class_name}{class_name_ending}", class_path) return cls
def build_object(dataset=None, **params): try: prepared_parameters = MatchedSequencesEncoder._prepare_parameters(**params) encoder = ReflectionHandler.get_class_by_name(MatchedSequencesEncoder.dataset_mapping[dataset.__class__.__name__], "reference_encoding/")(**prepared_parameters) except ValueError: raise ValueError("{} is not defined for dataset of type {}.".format(MatchedSequencesEncoder.__name__, dataset.__class__.__name__)) return encoder
def build_object(dataset=None, **params): try: prepared_params = Word2VecEncoder._prepare_parameters(**params) encoder = ReflectionHandler.get_class_by_name( Word2VecEncoder.dataset_mapping[dataset.__class__.__name__], "word2vec/")(**prepared_params) except ValueError: raise ValueError( "{} is not defined for dataset of type {}.".format( Word2VecEncoder.__name__, dataset.__class__.__name__)) return encoder
def parse(self, key: str, instruction: dict, symbol_table: SymbolTable, path: str = None) -> SubsamplingInstruction: valid_keys = ["type", "dataset", "subsampled_dataset_sizes", "dataset_export_formats"] ParameterValidator.assert_keys(instruction.keys(), valid_keys, SubsamplingParser.__name__, key) dataset_keys = symbol_table.get_keys_by_type(SymbolType.DATASET) ParameterValidator.assert_in_valid_list(instruction['dataset'], dataset_keys, SubsamplingParser.__name__, f'{key}/dataset') dataset = symbol_table.get(instruction['dataset']) ParameterValidator.assert_type_and_value(instruction['subsampled_dataset_sizes'], list, SubsamplingParser.__name__, f'{key}/subsampled_dataset_sizes') ParameterValidator.assert_all_type_and_value(instruction['subsampled_dataset_sizes'], int, SubsamplingParser.__name__, f'{key}/subsampled_dataset_sizes', 1, dataset.get_example_count()) valid_export_formats = ReflectionHandler.all_nonabstract_subclass_basic_names(DataExporter, 'Exporter', "dataset_export/") ParameterValidator.assert_type_and_value(instruction['dataset_export_formats'], list, SubsamplingParser.__name__, f"{key}/dataset_export_formats") ParameterValidator.assert_all_in_valid_list(instruction['dataset_export_formats'], valid_export_formats, SubsamplingParser.__name__, f"{key}/dataset_export_formats") return SubsamplingInstruction(dataset=dataset, subsampled_dataset_sizes=instruction['subsampled_dataset_sizes'], dataset_export_formats=[ReflectionHandler.get_class_by_name(export_format + "Exporter", "dataset_export/") for export_format in instruction['dataset_export_formats']], name=key)
def parse_instruction(key: str, instruction: dict, symbol_table: SymbolTable, path) -> tuple: ParameterValidator.assert_keys_present(list(instruction.keys()), ["type"], InstructionParser.__name__, key) valid_instructions = [ cls[:-6] for cls in ReflectionHandler.discover_classes_by_partial_name( "Parser", "dsl/instruction_parsers/") ] ParameterValidator.assert_in_valid_list(instruction["type"], valid_instructions, "InstructionParser", "type") parser = ReflectionHandler.get_class_by_name( "{}Parser".format(instruction["type"]), "instruction_parsers/")() instruction_object = parser.parse(key, instruction, symbol_table, path) symbol_table.add(key, SymbolType.INSTRUCTION, instruction_object) return instruction, symbol_table
def _parse_dataset(key: str, dataset_specs: dict, symbol_table: SymbolTable, result_path: str) -> SymbolTable: location = "ImportParser" ParameterValidator.assert_keys(list(dataset_specs.keys()), ImportParser.valid_keys, location, f"datasets:{key}", False) valid_formats = ReflectionHandler.all_nonabstract_subclass_basic_names(DataImport, "Import", "IO/dataset_import/") ParameterValidator.assert_in_valid_list(dataset_specs["format"], valid_formats, location, "format") import_cls = ReflectionHandler.get_class_by_name("{}Import".format(dataset_specs["format"])) params = ImportParser._prepare_params(dataset_specs, result_path, key) if "is_repertoire" in params: ParameterValidator.assert_type_and_value(params["is_repertoire"], bool, location, "is_repertoire") if params["is_repertoire"] == True: if import_cls != IReceptorImport: assert "metadata_file" in params, f"{location}: Missing parameter: metadata_file under {key}/params/" ParameterValidator.assert_type_and_value(params["metadata_file"], str, location, "metadata_file") if params["is_repertoire"] == False: assert "paired" in params, f"{location}: Missing parameter: paired under {key}/params/" ParameterValidator.assert_type_and_value(params["paired"], bool, location, "paired") if params["paired"] == True: assert "receptor_chains" in params, f"{location}: Missing parameter: receptor_chains under {key}/params/" ParameterValidator.assert_in_valid_list(params["receptor_chains"], ["_".join(cp.value) for cp in ChainPair], location, "receptor_chains") try: dataset = import_cls.import_dataset(params, key) dataset.name = key symbol_table.add(key, SymbolType.DATASET, dataset) except KeyError as key_error: raise KeyError(f"{key_error}\n\nAn error occurred during parsing of dataset {key}. " f"The keyword {key_error.args[0]} was missing. This either means this argument was " f"not defined under definitions/datasets/{key}/params, or this column was missing from " f"an input data file. ") except Exception as ex: raise Exception(f"{ex}\n\nAn error occurred while parsing the dataset {key}. See the log above for more details.") return symbol_table
def run_immuneML(namespace: argparse.Namespace): if os.path.isdir(namespace.result_path) and len( os.listdir(namespace.result_path)) != 0: raise ValueError( f"Directory {namespace.result_path} already exists. Please specify a new output directory for the analysis." ) PathBuilder.build(namespace.result_path) logging.basicConfig(filename=namespace.result_path + "/log.txt", level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s') warnings.showwarning = lambda message, category, filename, lineno, file=None, line=None: logging.warning( message) if namespace.tool is None: app = ImmuneMLApp(namespace.specification_path, namespace.result_path) else: app_cls = ReflectionHandler.get_class_by_name(namespace.tool, "api/") app = app_cls(**vars(namespace)) app.run()
def prepare_reference(reference_params: dict, location: str, paired: bool): ParameterValidator.assert_keys(list(reference_params.keys()), ["format", "params"], location, "reference") seq_import_params = reference_params[ "params"] if "params" in reference_params else {} assert os.path.isfile(seq_import_params["path"]), f"{location}: the file {seq_import_params['path']} does not exist. " \ f"Specify the correct path under reference." if "paired" in seq_import_params: assert seq_import_params[ "paired"] == paired, f"{location}: paired must be {paired} for SequenceImport" else: seq_import_params["paired"] = paired format_str = reference_params["format"] if format_str == "IRIS": # todo refactor this when refactoring IRISSequenceImport receptors = IRISSequenceImport.import_items(**seq_import_params) else: import_class = ReflectionHandler.get_class_by_name( "{}Import".format(format_str)) params = DefaultParamsLoader.load( EnvironmentSettings.default_params_path + "datasets/", DefaultParamsLoader.convert_to_snake_case(format_str)) for key, value in seq_import_params.items(): params[key] = value params["paired"] = paired processed_params = DatasetImportParams.build_object(**params) receptors = ImportHelper.import_items( import_class, reference_params["params"]["path"], processed_params) return receptors
def _get_implanting_strategy(key: str, signal: dict) -> SignalImplantingStrategy: valid_strategies = [cls[:-10] for cls in ReflectionHandler.discover_classes_by_partial_name("Implanting", "simulation/signal_implanting_strategy/")] ParameterValidator.assert_in_valid_list(signal["implanting"], valid_strategies, "SignalParser", key) defaults = DefaultParamsLoader.load("signal_implanting_strategy/", f"{signal['implanting']}Implanting") signal = {**defaults, **signal} ParameterValidator.assert_keys_present(list(signal.keys()), ["motifs", "implanting", "sequence_position_weights"], SignalParser.__name__, key) implanting_comp = None if 'implanting_computation' in signal: implanting_comp = signal['implanting_computation'].lower() ParameterValidator.assert_in_valid_list(implanting_comp, [el.name.lower() for el in ImplantingComputation], SignalParser.__name__, 'implanting_computation') implanting_comp = ImplantingComputation[implanting_comp.upper()] implanting_strategy = ReflectionHandler.get_class_by_name(f"{signal['implanting']}Implanting")(GappedMotifImplanting(), signal["sequence_position_weights"], implanting_comp) return implanting_strategy
def import_encoder(config: MLMethodConfiguration, config_dir: str): encoder_class = ReflectionHandler.get_class_by_name( config.encoding_class) encoder = encoder_class.load_encoder(config_dir + config.encoding_file) return encoder
def parse_encoder_internal(short_class_name: str, encoder_params: dict): encoder_class = ReflectionHandler.get_class_by_name( f"{short_class_name}Encoder", "encodings") params = ObjectParser.get_all_params( {short_class_name: encoder_params}, "encodings", short_class_name) return encoder_class, params, params
def make_report_builder(self): report_builder = ReflectionHandler.get_class_by_name(f"{self.output['format']}Builder", "presentation/") return report_builder
def _prepare_sequence_encoder(self, params: EncoderParams): class_name = self.sequence_encoding.value sequence_encoder = ReflectionHandler.get_class_by_name( class_name, "encodings") return sequence_encoder
def test_get_class_by_name(self): cls = ReflectionHandler.get_class_by_name("KmerHelper", "util") self.assertEqual(KmerHelper, cls)
def parse(self, key: str, instruction: dict, symbol_table: SymbolTable, path: str = None) -> TrainMLModelInstruction: valid_keys = [ "assessment", "selection", "dataset", "strategy", "labels", "metrics", "settings", "number_of_processes", "type", "reports", "optimization_metric", 'refit_optimal_model', 'store_encoded_data' ] ParameterValidator.assert_type_and_value(instruction['settings'], list, TrainMLModelParser.__name__, 'settings') ParameterValidator.assert_keys(list(instruction.keys()), valid_keys, TrainMLModelParser.__name__, "TrainMLModel") ParameterValidator.assert_type_and_value( instruction['refit_optimal_model'], bool, TrainMLModelParser.__name__, 'refit_optimal_model') ParameterValidator.assert_type_and_value(instruction['metrics'], list, TrainMLModelParser.__name__, 'metrics') ParameterValidator.assert_type_and_value( instruction['optimization_metric'], str, TrainMLModelParser.__name__, 'optimization_metric') ParameterValidator.assert_type_and_value( instruction['number_of_processes'], int, TrainMLModelParser.__name__, 'number_of_processes') ParameterValidator.assert_type_and_value(instruction['strategy'], str, TrainMLModelParser.__name__, 'strategy') ParameterValidator.assert_type_and_value( instruction['store_encoded_data'], bool, TrainMLModelParser.__name__, 'store_encoded_data') settings = self._parse_settings(instruction, symbol_table) dataset = symbol_table.get(instruction["dataset"]) assessment = self._parse_split_config(key, instruction, "assessment", symbol_table, len(settings)) selection = self._parse_split_config(key, instruction, "selection", symbol_table, len(settings)) assessment, selection = self._update_split_configs( assessment, selection, dataset) label_config = self._create_label_config(instruction, dataset, key) strategy = ReflectionHandler.get_class_by_name( instruction["strategy"], "hyperparameter_optimization/") metrics = {Metric[metric.upper()] for metric in instruction["metrics"]} optimization_metric = Metric[ instruction["optimization_metric"].upper()] metric_search_criterion = Metric.get_search_criterion( optimization_metric) path = self._prepare_path(instruction) context = self._prepare_context(instruction, symbol_table) reports = self._prepare_reports(instruction["reports"], symbol_table) hp_instruction = TrainMLModelInstruction( dataset=dataset, hp_strategy=strategy(settings, metric_search_criterion), hp_settings=settings, assessment=assessment, selection=selection, metrics=metrics, optimization_metric=optimization_metric, refit_optimal_model=instruction['refit_optimal_model'], label_configuration=label_config, path=path, context=context, store_encoded_data=instruction['store_encoded_data'], number_of_processes=instruction["number_of_processes"], reports=reports, name=key) return hp_instruction