コード例 #1
0
    def _write_source(self,
                      filename,
                      extver,
                      img_extver=None,
                      overwrite=False):
        coldefs, header = self._get_source_hdu()

        tbhdu = pyfits.BinTableHDU.from_columns(coldefs)
        tbhdu.name = self.src_type.upper()

        if self.src_type == "phlist":
            hduclas1 = "PHOTONS"
        else:
            hduclas1 = self.src_type.upper()
        tbhdu.header["HDUCLASS"] = "HEASARC/SIMPUT"
        tbhdu.header["HDUCLAS1"] = hduclas1
        tbhdu.header["HDUVERS"] = "1.1.0"
        tbhdu.header.update(header)

        tbhdu.header["EXTVER"] = extver
        if self.imhdu is not None:
            self.imhdu.header["EXTVER"] = img_extver

        if os.path.exists(filename) and not overwrite:
            mylog.info(f"Appending this source to {filename}.")
            with pyfits.open(filename, mode='append') as f:
                f.append(tbhdu)
                if self.imhdu is not None:
                    f.append(self.imhdu)
                f.flush()
        else:
            if os.path.exists(filename):
                mylog.warning(f"Overwriting {filename} with this source.")
            else:
                mylog.info(f"Writing source to {filename}.")
            f = [pyfits.PrimaryHDU(), tbhdu]
            if self.imhdu is not None:
                f.append(self.imhdu)
            pyfits.HDUList(f).writeto(filename, overwrite=overwrite)

        if self.imhdu is not None:
            self.imhdu.header["EXTVER"] = 1
コード例 #2
0
ファイル: instrument.py プロジェクト: NegriAndrea/soxs
def generate_events(source,
                    exp_time,
                    instrument,
                    sky_center,
                    no_dither=False,
                    dither_params=None,
                    roll_angle=0.0,
                    subpixel_res=False,
                    aimpt_shift=None,
                    prng=None):
    """
    Take unconvolved events and convolve them with instrumental responses. This 
    function does the following:

    1. Determines which events are observed using the ARF
    2. Pixelizes the events, applying PSF effects and dithering
    3. Determines energy channels using the RMF

    This function is not meant to be called by the end-user but is used by
    the :func:`~soxs.instrument.instrument_simulator` function.

    Parameters
    ----------
    input_events : string, dict, or None
        The unconvolved events to be used as input. Can be one of the
        following:
        1. The name of a SIMPUT catalog file.
        2. A Python dictionary containing the following items:
        "ra": A NumPy array of right ascension values in degrees.
        "dec": A NumPy array of declination values in degrees.
        "energy": A NumPy array of energy values in keV.
        "flux": The flux of the entire source, in units of erg/cm**2/s.
    out_file : string
        The name of the event file to be written.
    exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The exposure time to use, in seconds. 
    instrument : string
        The name of the instrument to use, which picks an instrument
        specification from the instrument registry. 
    sky_center : array, tuple, or list
        The center RA, Dec coordinates of the observation, in degrees.
    no_dither : boolean, optional
        If True, turn off dithering entirely. Default: False
    dither_params : array-like of floats, optional
        The parameters to use to control the size and period of the dither
        pattern. The first two numbers are the dither amplitude in x and y
        detector coordinates in arcseconds, and the second two numbers are
        the dither period in x and y detector coordinates in seconds. 
        Default: [8.0, 8.0, 1000.0, 707.0].
    roll_angle : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional
        The roll angle of the observation in degrees. Default: 0.0
    subpixel_res : boolean, optional
        If True, event positions are not randomized within the pixels 
        within which they are detected. Default: False
    aimpt_shift : array-like, optional
        A two-float array-like object which shifts the aimpoint on the 
        detector from the nominal position. Units are in arcseconds.
        Default: None, which results in no shift from the nominal aimpoint. 
    prng : :class:`~numpy.random.RandomState` object, integer, or None
        A pseudo-random number generator. Typically will only 
        be specified if you have a reason to generate the same 
        set of random numbers, such as for a test. Default is None, 
        which sets the seed based on the system time. 
    """
    exp_time = parse_value(exp_time, "s")
    roll_angle = parse_value(roll_angle, "deg")
    prng = parse_prng(prng)
    if source is None:
        source_list = []
    elif isinstance(source, dict):
        parameters = {}
        for key in ["flux", "emin", "emax", "src_names"]:
            parameters[key] = source[key]
        source_list = []
        for i in range(len(parameters["flux"])):
            phlist = SimputPhotonList(source["ra"][i], source["dec"][i],
                                      source["energy"][i],
                                      parameters['flux'][i],
                                      parameters['src_names'][i])
            source_list.append(phlist)
    elif isinstance(source, str):
        # Assume this is a SIMPUT catalog
        source_list, parameters = read_simput_catalog(source)

    try:
        instrument_spec = instrument_registry[instrument]
    except KeyError:
        raise KeyError(
            f"Instrument {instrument} is not in the instrument registry!")
    if not instrument_spec["imaging"]:
        raise RuntimeError(f"Instrument '{instrument_spec['name']}' is not "
                           f"designed for imaging observations!")

    arf_file = get_data_file(instrument_spec["arf"])
    rmf_file = get_data_file(instrument_spec["rmf"])
    arf = AuxiliaryResponseFile(arf_file)
    rmf = RedistributionMatrixFile(rmf_file)

    nx = instrument_spec["num_pixels"]
    plate_scale = instrument_spec["fov"] / nx / 60.  # arcmin to deg
    plate_scale_arcsec = plate_scale * 3600.0

    if aimpt_shift is None:
        aimpt_shift = np.zeros(2)
    aimpt_shift = ensure_numpy_array(aimpt_shift).astype('float64')
    aimpt_shift /= plate_scale_arcsec

    if not instrument_spec["dither"]:
        dither_on = False
    else:
        dither_on = not no_dither
    if dither_params is None:
        dither_params = [8.0, 8.0, 1000.0, 707.0]
    dither_dict = {
        "x_amp": dither_params[0],
        "y_amp": dither_params[1],
        "x_period": dither_params[2],
        "y_period": dither_params[3],
        "dither_on": dither_on,
        "plate_scale": plate_scale_arcsec
    }

    event_params = {
        "exposure_time": exp_time,
        "arf": arf.filename,
        "sky_center": sky_center,
        "pix_center": np.array([0.5 * (2 * nx + 1)] * 2),
        "num_pixels": nx,
        "plate_scale": plate_scale,
        "rmf": rmf.filename,
        "channel_type": rmf.chan_type,
        "telescope": rmf.header["TELESCOP"],
        "instrument": instrument_spec['name'],
        "mission": rmf.header.get("MISSION", ""),
        "nchan": rmf.n_ch,
        "roll_angle": roll_angle,
        "fov": instrument_spec["fov"],
        "chan_lim": [rmf.cmin, rmf.cmax],
        "chips": instrument_spec["chips"],
        "dither_params": dither_dict,
        "aimpt_coords": instrument_spec["aimpt_coords"],
        "aimpt_shift": aimpt_shift
    }

    # Set up WCS

    w = pywcs.WCS(naxis=2)
    w.wcs.crval = event_params["sky_center"]
    w.wcs.crpix = event_params["pix_center"]
    w.wcs.cdelt = [-plate_scale, plate_scale]
    w.wcs.ctype = ["RA---TAN", "DEC--TAN"]
    w.wcs.cunit = ["deg"] * 2

    # Determine rotation matrix
    rot_mat = get_rot_mat(roll_angle)

    # Set up PSF
    psf_type = instrument_spec["psf"][0]
    psf_class = psf_model_registry[psf_type]
    psf = psf_class(instrument_spec, prng=prng)

    all_events = defaultdict(list)

    for i, src in enumerate(source_list):

        mylog.info(
            f"Detecting events from source {parameters['src_names'][i]}")

        # Step 1: Use ARF to determine which photons are observed

        mylog.info(f"Applying energy-dependent effective area from "
                   f"{os.path.split(arf.filename)[-1]}.")
        refband = [parameters["emin"][i], parameters["emax"][i]]
        if src.src_type == "phlist":
            events = arf.detect_events_phlist(src.events.copy(),
                                              exp_time,
                                              parameters["flux"][i],
                                              refband,
                                              prng=prng)
        elif src.src_type.endswith("spectrum"):
            events = arf.detect_events_spec(src, exp_time, refband, prng=prng)

        n_evt = events["energy"].size

        if n_evt == 0:
            mylog.warning("No events were observed for this source!!!")
        else:

            # Step 2: Assign pixel coordinates to events. Apply dithering and
            # PSF. Clip events that don't fall within the detection region.

            mylog.info("Pixeling events.")

            # Convert RA, Dec to pixel coordinates
            xpix, ypix = w.wcs_world2pix(events["ra"], events["dec"], 1)

            xpix -= event_params["pix_center"][0]
            ypix -= event_params["pix_center"][1]

            events.pop("ra")
            events.pop("dec")

            n_evt = xpix.size

            # Rotate physical coordinates to detector coordinates

            det = np.dot(rot_mat, np.array([xpix, ypix]))
            detx = det[0, :] + event_params["aimpt_coords"][0] + aimpt_shift[0]
            dety = det[1, :] + event_params["aimpt_coords"][1] + aimpt_shift[1]

            # Add times to events
            events['time'] = prng.uniform(size=n_evt,
                                          low=0.0,
                                          high=event_params["exposure_time"])

            # Apply dithering

            x_offset, y_offset = perform_dither(events["time"], dither_dict)

            detx -= x_offset
            dety -= y_offset

            # PSF scattering of detector coordinates

            mylog.info(f"Scattering events with a {psf}-based PSF.")
            detx, dety = psf.scatter(detx, dety, events["energy"])

            # Convert detector coordinates to chip coordinates.
            # Throw out events that don't fall on any chip.

            cx = np.trunc(detx) + 0.5 * np.sign(detx)
            cy = np.trunc(dety) + 0.5 * np.sign(dety)

            events["chip_id"] = -np.ones(n_evt, dtype='int')
            for i, chip in enumerate(event_params["chips"]):
                rtype = chip[0]
                args = chip[1:]
                r, _ = create_region(rtype, args, 0.0, 0.0)
                inside = r.contains(PixCoord(cx, cy))
                events["chip_id"][inside] = i
            keep = events["chip_id"] > -1

            mylog.info(f"{n_evt-keep.sum()} events were rejected because "
                       f"they do not fall on any CCD.")
            n_evt = keep.sum()

            if n_evt == 0:
                mylog.warning("No events are within the field "
                              "of view for this source!!!")
            else:

                # Keep only those events which fall on a chip

                for key in events:
                    events[key] = events[key][keep]

                # Convert chip coordinates back to detector coordinates,
                # unless the user has specified that they want subpixel
                # resolution

                if subpixel_res:
                    events["detx"] = detx[keep]
                    events["dety"] = dety[keep]
                else:
                    events["detx"] = cx[keep] + \
                                     prng.uniform(low=-0.5, high=0.5, size=n_evt)
                    events["dety"] = cy[keep] + \
                                     prng.uniform(low=-0.5, high=0.5, size=n_evt)

                # Convert detector coordinates back to pixel coordinates by
                # adding the dither offsets back in and applying the rotation
                # matrix again

                det = np.array([
                    events["detx"] + x_offset[keep] -
                    event_params["aimpt_coords"][0] - aimpt_shift[0],
                    events["dety"] + y_offset[keep] -
                    event_params["aimpt_coords"][1] - aimpt_shift[1]
                ])
                pix = np.dot(rot_mat.T, det)

                events["xpix"] = pix[0, :] + event_params['pix_center'][0]
                events["ypix"] = pix[1, :] + event_params['pix_center'][1]

        if n_evt > 0:
            for key in events:
                all_events[key] = np.concatenate(
                    [all_events[key], events[key]])

    if len(all_events["energy"]) == 0:
        mylog.warning("No events from any of the sources in "
                      "the catalog were detected!")
        for key in [
                "xpix", "ypix", "detx", "dety", "time", "chip_id",
                event_params["channel_type"]
        ]:
            all_events[key] = np.array([])
    else:
        # Step 4: Scatter energies with RMF
        mylog.info(f"Scattering energies with "
                   f"RMF {os.path.split(rmf.filename)[-1]}.")
        all_events = rmf.scatter_energies(all_events, prng=prng)

    return all_events, event_params
コード例 #3
0
ファイル: spectra.py プロジェクト: eblur/soxs
 def from_xspec(cls, model_string, params, emin=0.01, emax=50.0,
                nbins=10000):
     mylog.warning("The 'from_xspec' method has been deprecated: "
                   "use 'from_xspec_model' instead.")
     cls.from_xspec_model(model_string, params, emin=emin, emax=emax, nbins=nbins)
コード例 #4
0
ファイル: instrument.py プロジェクト: jzuhone/xrs_utils
def generate_events(input_events, exp_time, instrument, sky_center, 
                    no_dither=False, dither_params=None, 
                    roll_angle=0.0, subpixel_res=False, prng=None):
    """
    Take unconvolved events and convolve them with instrumental responses. This 
    function does the following:

    1. Determines which events are observed using the ARF
    2. Pixelizes the events, applying PSF effects and dithering
    3. Determines energy channels using the RMF

    This function is not meant to be called by the end-user but is used by
    the :func:`~soxs.instrument.instrument_simulator` function.

    Parameters
    ----------
    input_events : string, dict, or None
        The unconvolved events to be used as input. Can be one of the
        following:
        1. The name of a SIMPUT catalog file.
        2. A Python dictionary containing the following items:
        "ra": A NumPy array of right ascension values in degrees.
        "dec": A NumPy array of declination values in degrees.
        "energy": A NumPy array of energy values in keV.
        "flux": The flux of the entire source, in units of erg/cm**2/s.
    out_file : string
        The name of the event file to be written.
    exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The exposure time to use, in seconds. 
    instrument : string
        The name of the instrument to use, which picks an instrument
        specification from the instrument registry. 
    sky_center : array, tuple, or list
        The center RA, Dec coordinates of the observation, in degrees.
    no_dither : boolean, optional
        If True, turn off dithering entirely. Default: False
    dither_params : array-like of floats, optional
        The parameters to use to control the size and period of the dither
        pattern. The first two numbers are the dither amplitude in x and y
        detector coordinates in arcseconds, and the second two numbers are
        the dither period in x and y detector coordinates in seconds. 
        Default: [8.0, 8.0, 1000.0, 707.0].
    roll_angle : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional
        The roll angle of the observation in degrees. Default: 0.0
    subpixel_res: boolean, optional
        If True, event positions are not randomized within the pixels 
        within which they are detected. Default: False
    prng : :class:`~numpy.random.RandomState` object, integer, or None
        A pseudo-random number generator. Typically will only 
        be specified if you have a reason to generate the same 
        set of random numbers, such as for a test. Default is None, 
        which sets the seed based on the system time. 
    """
    import pyregion._region_filter as rfilter
    exp_time = parse_value(exp_time, "s")
    roll_angle = parse_value(roll_angle, "deg")
    prng = parse_prng(prng)
    if isinstance(input_events, dict):
        parameters = {}
        for key in ["flux", "emin", "emax", "sources"]:
            parameters[key] = input_events[key]
        event_list = []
        for i in range(len(parameters["flux"])):
            edict = {}
            for key in ["ra", "dec", "energy"]:
                edict[key] = input_events[key][i]
            event_list.append(edict)
    elif isinstance(input_events, string_types):
        # Assume this is a SIMPUT catalog
        event_list, parameters = read_simput_catalog(input_events)

    try:
        instrument_spec = instrument_registry[instrument]
    except KeyError:
        raise KeyError("Instrument %s is not in the instrument registry!" % instrument)
    if not instrument_spec["imaging"]:
        raise RuntimeError("Instrument '%s' is not " % instrument_spec["name"] +
                           "designed for imaging observations!")

    arf_file = get_response_path(instrument_spec["arf"])
    rmf_file = get_response_path(instrument_spec["rmf"])
    arf = AuxiliaryResponseFile(arf_file)
    rmf = RedistributionMatrixFile(rmf_file)

    nx = instrument_spec["num_pixels"]
    plate_scale = instrument_spec["fov"]/nx/60. # arcmin to deg
    plate_scale_arcsec = plate_scale * 3600.0

    if not instrument_spec["dither"]:
        dither_on = False
    else:
        dither_on = not no_dither
    if dither_params is None:
        dither_params = [8.0, 8.0, 1000.0, 707.0]
    dither_dict = {"x_amp": dither_params[0],
                   "y_amp": dither_params[1],
                   "x_period": dither_params[2],
                   "y_period": dither_params[3],
                   "dither_on": dither_on,
                   "plate_scale": plate_scale_arcsec}

    event_params = {}
    event_params["exposure_time"] = exp_time
    event_params["arf"] = arf.filename
    event_params["sky_center"] = sky_center
    event_params["pix_center"] = np.array([0.5*(2*nx+1)]*2)
    event_params["num_pixels"] = nx
    event_params["plate_scale"] = plate_scale
    event_params["rmf"] = rmf.filename
    event_params["channel_type"] = rmf.header["CHANTYPE"]
    event_params["telescope"] = rmf.header["TELESCOP"]
    event_params["instrument"] = instrument_spec['name']
    event_params["mission"] = rmf.header.get("MISSION", "")
    event_params["nchan"] = rmf.n_ch
    event_params["roll_angle"] = roll_angle
    event_params["fov"] = instrument_spec["fov"]
    event_params["chan_lim"] = [rmf.cmin, rmf.cmax]
    event_params["chips"] = instrument_spec["chips"]
    event_params["dither_params"] = dither_dict
    event_params["aimpt_coords"] = instrument_spec["aimpt_coords"]

    w = pywcs.WCS(naxis=2)
    w.wcs.crval = event_params["sky_center"]
    w.wcs.crpix = event_params["pix_center"]
    w.wcs.cdelt = [-plate_scale, plate_scale]
    w.wcs.ctype = ["RA---TAN","DEC--TAN"]
    w.wcs.cunit = ["deg"]*2

    rot_mat = get_rot_mat(roll_angle)

    all_events = defaultdict(list)

    for i, evts in enumerate(event_list):

        mylog.info("Detecting events from source %s." % parameters["sources"][i])

        # Step 1: Use ARF to determine which photons are observed

        mylog.info("Applying energy-dependent effective area from %s." % os.path.split(arf.filename)[-1])
        refband = [parameters["emin"][i], parameters["emax"][i]]
        events = arf.detect_events(evts, exp_time, parameters["flux"][i], refband, prng=prng)

        n_evt = events["energy"].size

        if n_evt == 0:
            mylog.warning("No events were observed for this source!!!")
        else:

            # Step 2: Assign pixel coordinates to events. Apply dithering and
            # PSF. Clip events that don't fall within the detection region.

            mylog.info("Pixeling events.")

            # Convert RA, Dec to pixel coordinates
            xpix, ypix = w.wcs_world2pix(events["ra"], events["dec"], 1)

            xpix -= event_params["pix_center"][0]
            ypix -= event_params["pix_center"][1]

            events.pop("ra")
            events.pop("dec")

            n_evt = xpix.size

            # Rotate physical coordinates to detector coordinates

            det = np.dot(rot_mat, np.array([xpix, ypix]))
            detx = det[0,:] + event_params["aimpt_coords"][0]
            dety = det[1,:] + event_params["aimpt_coords"][1]

            # Add times to events
            events['time'] = prng.uniform(size=n_evt, low=0.0,
                                          high=event_params["exposure_time"])

            # Apply dithering

            x_offset, y_offset = perform_dither(events["time"], dither_dict)

            detx -= x_offset
            dety -= y_offset

            # PSF scattering of detector coordinates

            if instrument_spec["psf"] is not None:
                psf_type, psf_spec = instrument_spec["psf"]
                if psf_type == "gaussian":
                    sigma = psf_spec/sigma_to_fwhm/plate_scale_arcsec
                    detx += prng.normal(loc=0.0, scale=sigma, size=n_evt)
                    dety += prng.normal(loc=0.0, scale=sigma, size=n_evt)
                else:
                    raise NotImplementedError("PSF type %s not implemented!" % psf_type)

            # Convert detector coordinates to chip coordinates.
            # Throw out events that don't fall on any chip.

            cx = np.trunc(detx)+0.5*np.sign(detx)
            cy = np.trunc(dety)+0.5*np.sign(dety)

            if event_params["chips"] is None:
                events["chip_id"] = np.zeros(n_evt, dtype='int')
                keepx = np.logical_and(cx >= -0.5*nx, cx <= 0.5*nx)
                keepy = np.logical_and(cy >= -0.5*nx, cy <= 0.5*nx)
                keep = np.logical_and(keepx, keepy)
            else:
                events["chip_id"] = -np.ones(n_evt, dtype='int')
                for i, chip in enumerate(event_params["chips"]):
                    thisc = np.ones(n_evt, dtype='bool')
                    rtype = chip[0]
                    args = chip[1:]
                    r = getattr(rfilter, rtype)(*args)
                    inside = r.inside(cx, cy)
                    thisc = np.logical_and(thisc, inside)
                    events["chip_id"][thisc] = i
                keep = events["chip_id"] > -1

            mylog.info("%d events were rejected because " % (n_evt-keep.sum()) +
                       "they do not fall on any CCD.")
            n_evt = keep.sum()

            if n_evt == 0:
                mylog.warning("No events are within the field of view for this source!!!")
            else:

                # Keep only those events which fall on a chip

                for key in events:
                    events[key] = events[key][keep]

                # Convert chip coordinates back to detector coordinates, unless the
                # user has specified that they want subpixel resolution

                if subpixel_res:
                    events["detx"] = detx[keep]
                    events["dety"] = dety[keep]
                else:
                    events["detx"] = cx[keep] + prng.uniform(low=-0.5, high=0.5, size=n_evt)
                    events["dety"] = cy[keep] + prng.uniform(low=-0.5, high=0.5, size=n_evt)

                # Convert detector coordinates back to pixel coordinates by
                # adding the dither offsets back in and applying the rotation
                # matrix again

                det = np.array([events["detx"] + x_offset[keep] - event_params["aimpt_coords"][0],
                                events["dety"] + y_offset[keep] - event_params["aimpt_coords"][1]])
                pix = np.dot(rot_mat.T, det)

                events["xpix"] = pix[0,:] + event_params['pix_center'][0]
                events["ypix"] = pix[1,:] + event_params['pix_center'][1]

        if n_evt > 0:
            for key in events:
                all_events[key] = np.concatenate([all_events[key], events[key]])

    if len(all_events["energy"]) == 0:
        mylog.warning("No events from any of the sources in the catalog were detected!")
        for key in ["xpix", "ypix", "detx", "dety", "time", "chip_id", event_params["channel_type"]]:
            all_events[key] = np.array([])
    else:
        # Step 4: Scatter energies with RMF
        mylog.info("Scattering energies with RMF %s." % os.path.split(rmf.filename)[-1])
        all_events = rmf.scatter_energies(all_events, prng=prng)

    return all_events, event_params
コード例 #5
0
ファイル: spectra.py プロジェクト: jzuhone/xrs_utils
 def from_xspec(cls, model_string, params, emin, emax, nbins):
     mylog.warning("The 'from_xspec' method has been deprecated: "
                   "use 'from_xspec_model' instead.")
     cls.from_xspec_model(model_string, params, emin, emax, nbins)
コード例 #6
0
ファイル: events.py プロジェクト: eblur/soxs
def make_exposure_map(event_file,
                      expmap_file,
                      energy,
                      weights=None,
                      asol_file=None,
                      normalize=True,
                      overwrite=False,
                      nhistx=16,
                      nhisty=16):
    """
    Make an exposure map for a SOXS event file, and optionally write
    an aspect solution file. The exposure map will be created by
    binning an aspect histogram over the range of the aspect solution.

    Parameters
    ----------
    event_file : string
        The path to the event file to use for making the exposure map.
    expmap_file : string
        The path to write the exposure map file to.
    energy : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, or NumPy array
        The energy in keV to use when computing the exposure map, or 
        a set of energies to be used with the *weights* parameter. If
        providing a set, it must be in keV.
    weights : array-like, optional
        The weights to use with a set of energies given in the
        *energy* parameter. Used to create a more accurate exposure
        map weighted by a range of energies. Default: None
    asol_file : string, optional
        The path to write the aspect solution file to, if desired.
        Default: None
    normalize : boolean, optional
        If True, the exposure map will be divided by the exposure time
        so that the map's units are cm**2. Default: True
    overwrite : boolean, optional
        Whether or not to overwrite an existing file. Default: False
    nhistx : integer, optional
        The number of bins in the aspect histogram in the DETX
        direction. Default: 16
    nhisty : integer, optional
        The number of bins in the aspect histogram in the DETY
        direction. Default: 16
    """
    import pyregion._region_filter as rfilter
    from scipy.ndimage.interpolation import rotate, shift
    from soxs.instrument import AuxiliaryResponseFile, perform_dither
    if isinstance(energy, np.ndarray) and weights is None:
        raise RuntimeError("Must supply a single value for the energy if "
                           "you do not supply weights!")
    if not isinstance(energy, np.ndarray):
        energy = parse_value(energy, "keV")
    f_evt = pyfits.open(event_file)
    hdu = f_evt["EVENTS"]
    arf = AuxiliaryResponseFile(hdu.header["ANCRFILE"])
    exp_time = hdu.header["EXPOSURE"]
    nx = int(hdu.header["TLMAX2"] - 0.5) // 2
    ny = int(hdu.header["TLMAX3"] - 0.5) // 2
    ra0 = hdu.header["TCRVL2"]
    dec0 = hdu.header["TCRVL3"]
    xdel = hdu.header["TCDLT2"]
    ydel = hdu.header["TCDLT3"]
    x0 = hdu.header["TCRPX2"]
    y0 = hdu.header["TCRPX3"]
    xdet0 = 0.5 * (2 * nx + 1)
    ydet0 = 0.5 * (2 * ny + 1)
    xaim = hdu.header.get("AIMPT_X", 0.0)
    yaim = hdu.header.get("AIMPT_Y", 0.0)
    roll = hdu.header["ROLL_PNT"]
    instr = instrument_registry[hdu.header["INSTRUME"].lower()]
    dither_params = {}
    if "DITHXAMP" in hdu.header:
        dither_params["x_amp"] = hdu.header["DITHXAMP"]
        dither_params["y_amp"] = hdu.header["DITHYAMP"]
        dither_params["x_period"] = hdu.header["DITHXPER"]
        dither_params["y_period"] = hdu.header["DITHYPER"]
        dither_params["plate_scale"] = ydel * 3600.0
        dither_params["dither_on"] = True
    else:
        dither_params["dither_on"] = False
    f_evt.close()

    # Create time array for aspect solution
    dt = 1.0  # Seconds
    t = np.arange(0.0, exp_time + dt, dt)

    # Construct WCS
    w = pywcs.WCS(naxis=2)
    w.wcs.crval = [ra0, dec0]
    w.wcs.crpix = [x0, y0]
    w.wcs.cdelt = [xdel, ydel]
    w.wcs.ctype = ["RA---TAN", "DEC--TAN"]
    w.wcs.cunit = ["deg"] * 2

    # Create aspect solution if we had dithering.
    # otherwise just set the offsets to zero
    if dither_params["dither_on"]:
        x_off, y_off = perform_dither(t, dither_params)
        # Make the aspect histogram
        x_amp = dither_params["x_amp"] / dither_params["plate_scale"]
        y_amp = dither_params["y_amp"] / dither_params["plate_scale"]
        x_edges = np.linspace(-x_amp, x_amp, nhistx + 1, endpoint=True)
        y_edges = np.linspace(-y_amp, y_amp, nhisty + 1, endpoint=True)
        asphist = np.histogram2d(x_off, y_off, (x_edges, y_edges))[0]
        asphist *= dt
        x_mid = 0.5 * (x_edges[1:] + x_edges[:-1])
        y_mid = 0.5 * (y_edges[1:] + y_edges[:-1])

    # Determine the effective area
    eff_area = arf.interpolate_area(energy).value
    if weights is not None:
        eff_area = np.average(eff_area, weights=weights)

    if instr["chips"] is None:
        rtypes = ["Box"]
        args = [[0.0, 0.0, instr["num_pixels"], instr["num_pixels"]]]
    else:
        rtypes = []
        args = []
        for i, chip in enumerate(instr["chips"]):
            rtypes.append(chip[0])
            args.append(np.array(chip[1:]))

    tmpmap = np.zeros((2 * nx, 2 * ny))

    for rtype, arg in zip(rtypes, args):
        rfunc = getattr(rfilter, rtype)
        new_args = parse_region_args(rtype, arg, xdet0 - xaim - 1.0,
                                     ydet0 - yaim - 1.0)
        r = rfunc(*new_args)
        tmpmap += r.mask(tmpmap).astype("float64")

    if dither_params["dither_on"]:
        expmap = np.zeros((2 * nx, 2 * ny))
        niter = nhistx * nhisty
        pbar = tqdm(leave=True, total=niter, desc="Creating exposure map ")
        for i in range(nhistx):
            for j in range(nhisty):
                expmap += shift(tmpmap,
                                (x_mid[i], y_mid[j]), order=0) * asphist[i, j]
            pbar.update(nhisty)
        pbar.close()
    else:
        expmap = tmpmap * exp_time

    expmap *= eff_area
    if normalize:
        expmap /= exp_time

    if roll != 0.0:
        rotate(expmap, roll, output=expmap, reshape=False)

    map_header = {
        "EXPOSURE": exp_time,
        "MTYPE1": "EQPOS",
        "MFORM1": "RA,DEC",
        "CTYPE1": "RA---TAN",
        "CTYPE2": "DEC--TAN",
        "CRVAL1": ra0,
        "CRVAL2": dec0,
        "CUNIT1": "deg",
        "CUNIT2": "deg",
        "CDELT1": xdel,
        "CDELT2": ydel,
        "CRPIX1": x0,
        "CRPIX2": y0
    }

    map_hdu = pyfits.ImageHDU(expmap, header=pyfits.Header(map_header))
    map_hdu.name = "EXPMAP"
    map_hdu.writeto(expmap_file, overwrite=overwrite)

    if asol_file is not None:

        if dither_params["dither_on"]:

            det = np.array([x_off, y_off])

            pix = np.dot(get_rot_mat(roll).T, det)

            ra, dec = w.wcs_pix2world(pix[0, :] + x0, pix[1, :] + y0, 1)

            col_t = pyfits.Column(name='time', format='D', unit='s', array=t)
            col_ra = pyfits.Column(name='ra', format='D', unit='deg', array=ra)
            col_dec = pyfits.Column(name='dec',
                                    format='D',
                                    unit='deg',
                                    array=dec)

            coldefs = pyfits.ColDefs([col_t, col_ra, col_dec])
            tbhdu = pyfits.BinTableHDU.from_columns(coldefs)
            tbhdu.name = "ASPSOL"
            tbhdu.header["EXPOSURE"] = exp_time

            hdulist = [pyfits.PrimaryHDU(), tbhdu]

            pyfits.HDUList(hdulist).writeto(asol_file, overwrite=overwrite)

        else:

            mylog.warning("Refusing to write an aspect solution file because "
                          "there was no dithering.")
コード例 #7
0
ファイル: instrument.py プロジェクト: swrandall/soxs
def instrument_simulator(simput_file,
                         out_file,
                         exp_time,
                         instrument,
                         sky_center,
                         clobber=False,
                         dither_shape="square",
                         dither_size=16.0,
                         roll_angle=0.0,
                         astro_bkgnd=True,
                         instr_bkgnd=True,
                         prng=np.random):
    """
    Take unconvolved events in a SIMPUT catalog and create an event
    file from them. This function does the following:

    1. Determines which events are observed using the ARF
    2. Pixelizes the events, applying PSF effects and dithering
    3. Adds instrumental and astrophysical background events
    4. Determines energy channels using the RMF
    5. Writes the events to a file

    Parameters
    ----------
    simput_file : string
        The SIMPUT catalog file to be used as input.
    out_file : string
        The name of the event file to be written.
    exp_time : float
        The exposure time to use, in seconds. 
    instrument : string
        The name of the instrument to use, which picks an instrument
        specification from the instrument registry. Can also be a JSON
        file with a new instrument specification. If this is the case,
        it will be loaded into the instrument registry. 
    sky_center : array, tuple, or list
        The center RA, Dec coordinates of the observation, in degrees.
    clobber : boolean, optional
        Whether or not to clobber an existing file with the same name.
        Default: False
    dither_shape : string
        The shape of the dither. Currently "circle" or "square" 
        Default: "square"
    dither_size : float
        The size of the dither in arcseconds. Width of square or radius
        of circle. Default: 16.0
    roll_angle : float
        The roll angle of the observation in degrees. Default: 0.0
    astro_bkgnd : boolean, optional
        Whether or not to include astrophysical background. Default: True
    instr_bkgnd : boolean, optional
        Whether or not to include instrumental/particle background. Default: True
    prng : :class:`~numpy.random.RandomState` object or :mod:`~numpy.random`, optional
        A pseudo-random number generator. Typically will only be specified
        if you have a reason to generate the same set of random numbers, such as for a
        test. Default is the :mod:`numpy.random` module.

    Examples
    --------
    >>> instrument_simulator("sloshing_simput.fits", "sloshing_evt.fits", "hdxi_3x10",
    ...                      [30., 45.], clobber=True)
    """
    event_list, parameters = read_simput_catalog(simput_file)

    try:
        instrument_spec = instrument_registry[instrument]
    except KeyError:
        raise KeyError("Instrument %s is not in the instrument registry!" %
                       instrument)
    arf_file = check_file_location(instrument_spec["arf"], "files")
    rmf_file = check_file_location(instrument_spec["rmf"], "files")
    arf = AuxiliaryResponseFile(arf_file)
    rmf = RedistributionMatrixFile(rmf_file)

    nx = instrument_spec["num_pixels"]
    plate_scale = instrument_spec["fov"] / nx / 60.  # arcmin to deg
    plate_scale_arcsec = plate_scale * 3600.0
    dsize = dither_size / plate_scale_arcsec

    event_params = {}
    event_params["exposure_time"] = exp_time
    event_params["arf"] = os.path.split(arf.filename)[-1]
    event_params["sky_center"] = sky_center
    event_params["pix_center"] = np.array([0.5 * (nx + 1)] * 2)
    event_params["num_pixels"] = nx
    event_params["plate_scale"] = plate_scale
    event_params["rmf"] = os.path.split(rmf.filename)[-1]
    event_params["channel_type"] = rmf.header["CHANTYPE"]
    event_params["telescope"] = rmf.header["TELESCOP"]
    event_params["instrument"] = rmf.header["INSTRUME"]
    event_params["mission"] = rmf.header.get("MISSION", "")
    event_params["nchan"] = rmf.ebounds_header["DETCHANS"]
    event_params["roll_angle"] = roll_angle
    event_params["fov"] = instrument_spec["fov"]
    num = 0
    for i in range(1, rmf.num_mat_columns + 1):
        if rmf.header["TTYPE%d" % i] == "F_CHAN":
            num = i
            break
    event_params["chan_lim"] = [
        rmf.header["TLMIN%d" % num], rmf.header["TLMAX%d" % num]
    ]

    w = pywcs.WCS(naxis=2)
    w.wcs.crval = event_params["sky_center"]
    w.wcs.crpix = event_params["pix_center"]
    w.wcs.cdelt = [-plate_scale, plate_scale]
    w.wcs.ctype = ["RA---TAN", "DEC--TAN"]
    w.wcs.cunit = ["deg"] * 2

    roll_angle = np.deg2rad(roll_angle)
    rot_mat = np.array([[np.sin(roll_angle), -np.cos(roll_angle)],
                        [-np.cos(roll_angle), -np.sin(roll_angle)]])

    all_events = {}

    first = True

    for i, evts in enumerate(event_list):

        mylog.info("Detecting events from source %d" % (i + 1))

        # Step 1: Use ARF to determine which photons are observed

        mylog.info("Applying energy-dependent effective area from %s." %
                   event_params["arf"])
        refband = [parameters["emin"][i], parameters["emax"][i]]
        events = arf.detect_events(evts,
                                   exp_time,
                                   parameters["flux"][i],
                                   refband,
                                   prng=prng)

        n_evt = events["energy"].size

        if n_evt == 0:
            mylog.warning("No events were observed for this source!!!")
        else:

            # Step 2: Assign pixel coordinates to events. Apply dithering and
            # PSF. Clip events that don't fall within the detection region.

            mylog.info("Pixeling events.")

            # Convert RA, Dec to pixel coordinates
            xpix, ypix = w.wcs_world2pix(events["ra"], events["dec"], 1)

            xpix -= event_params["pix_center"][0]
            ypix -= event_params["pix_center"][1]

            events.pop("ra")
            events.pop("dec")

            n_evt = xpix.size

            # Dither pixel coordinates

            x_offset = np.zeros(n_evt)
            y_offset = np.zeros(n_evt)
            if dither_shape == "circle":
                r = dsize * np.sqrt(prng.uniform(size=n_evt))
                theta = 2. * np.pi * prng.uniform(size=n_evt)
                x_offset = r * np.cos(theta)
                y_offset = r * np.sin(theta)
            elif dither_shape == "square":
                x_offset = dsize * prng.uniform(low=-0.5, high=0.5, size=n_evt)
                y_offset = dsize * prng.uniform(low=-0.5, high=0.5, size=n_evt)

            xpix -= x_offset
            ypix -= y_offset

            # Rotate physical coordinates to detector coordinates

            det = np.dot(rot_mat, np.array([xpix, ypix]))
            detx = det[0, :]
            dety = det[1, :]

            # PSF scattering of detector coordinates

            psf_type, psf_spec = instrument_spec["psf"]
            if psf_type == "gaussian":
                sigma = psf_spec / sigma_to_fwhm / plate_scale_arcsec
                detx += prng.normal(loc=0.0, scale=sigma, size=n_evt)
                dety += prng.normal(loc=0.0, scale=sigma, size=n_evt)
            else:
                raise NotImplementedError("PSF type %s not implemented!" %
                                          psf_type)

            # Convert detector coordinates to chip coordinates

            events["chipx"] = np.round(detx + event_params['pix_center'][0])
            events["chipy"] = np.round(dety + event_params['pix_center'][1])

            # Throw out events that don't fall on the chip

            keepx = np.logical_and(events["chipx"] >= 1.0,
                                   events["chipx"] <= nx)
            keepy = np.logical_and(events["chipy"] >= 1.0,
                                   events["chipy"] <= nx)
            keep = np.logical_and(keepx, keepy)
            mylog.info("%d events were rejected because " %
                       (n_evt - keep.sum()) +
                       "they fall outside the field of view.")
            n_evt = keep.sum()

            if n_evt == 0:
                mylog.warning(
                    "No events are within the field of view for this source!!!"
                )
            else:

                for key in events:
                    events[key] = events[key][keep]

                # Convert chip coordinates back to detector coordinates

                events["detx"] = np.round(
                    events["chipx"] - event_params['pix_center'][0] +
                    prng.uniform(low=-0.5, high=0.5, size=n_evt))
                events["dety"] = np.round(
                    events["chipy"] - event_params['pix_center'][1] +
                    prng.uniform(low=-0.5, high=0.5, size=n_evt))

                # Convert detector coordinates back to pixel coordinates

                pix = np.dot(rot_mat,
                             np.array([events["detx"], events["dety"]]))

                events["xpix"] = pix[
                    0, :] + event_params['pix_center'][0] + x_offset[keep]
                events["ypix"] = pix[
                    1, :] + event_params['pix_center'][1] + y_offset[keep]

        if n_evt > 0:
            for key in events:
                if first:
                    all_events[key] = events[key]
                else:
                    all_events[key] = np.concatenate(
                        [all_events[key], events[key]])
            first = False

    if all_events["energy"].size == 0:
        mylog.warning(
            "No events from any of the sources in the catalog were detected!")

    # Step 3: Add astrophysical background

    if astro_bkgnd:
        mylog.info("Adding in astrophysical background.")
        bkg_events = add_background(astro_bkgnd,
                                    event_params,
                                    rot_mat,
                                    prng=prng)
        for key in all_events:
            all_events[key] = np.concatenate(
                [all_events[key], bkg_events[key]])

    # Step 4: Add particle background

    if instr_bkgnd:
        mylog.info("Adding in instrumental background.")
        bkg_events = add_background(
            instrument_spec["bkgnd"],
            event_params,
            rot_mat,
            prng=prng,
            focal_length=instrument_spec["focal_length"])
        for key in all_events:
            all_events[key] = np.concatenate(
                [all_events[key], bkg_events[key]])

    if all_events["energy"].size == 0:
        raise RuntimeError("No events were detected!!!")

    # Step 5: Scatter energies with RMF

    if all_events["energy"].size > 0:
        mylog.info("Scattering energies with RMF %s." % event_params['rmf'])
        all_events = rmf.scatter_energies(all_events, prng=prng)

    # Step 6: Add times to events

    all_events['time'] = np.random.uniform(size=all_events["energy"].size,
                                           low=0.0,
                                           high=event_params["exposure_time"])

    write_event_file(all_events, event_params, out_file, clobber=clobber)
コード例 #8
0
ファイル: instrument.py プロジェクト: granttremblay/soxs
def generate_events(input_events, exp_time, instrument, sky_center, 
                    no_dither=False, dither_params=None, 
                    roll_angle=0.0, subpixel_res=False, prng=None):
    """
    Take unconvolved events and convolve them with instrumental responses. This 
    function does the following:

    1. Determines which events are observed using the ARF
    2. Pixelizes the events, applying PSF effects and dithering
    3. Determines energy channels using the RMF

    This function is not meant to be called by the end-user but is used by
    the :func:`~soxs.instrument.instrument_simulator` function.

    Parameters
    ----------
    input_events : string, dict, or None
        The unconvolved events to be used as input. Can be one of the
        following:
        1. The name of a SIMPUT catalog file.
        2. A Python dictionary containing the following items:
        "ra": A NumPy array of right ascension values in degrees.
        "dec": A NumPy array of declination values in degrees.
        "energy": A NumPy array of energy values in keV.
        "flux": The flux of the entire source, in units of erg/cm**2/s.
    out_file : string
        The name of the event file to be written.
    exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`
        The exposure time to use, in seconds. 
    instrument : string
        The name of the instrument to use, which picks an instrument
        specification from the instrument registry. 
    sky_center : array, tuple, or list
        The center RA, Dec coordinates of the observation, in degrees.
    no_dither : boolean, optional
        If True, turn off dithering entirely. Default: False
    dither_params : array-like of floats, optional
        The parameters to use to control the size and period of the dither
        pattern. The first two numbers are the dither amplitude in x and y
        detector coordinates in arcseconds, and the second two numbers are
        the dither period in x and y detector coordinates in seconds. 
        Default: [8.0, 8.0, 1000.0, 707.0].
    roll_angle : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional
        The roll angle of the observation in degrees. Default: 0.0
    subpixel_res: boolean, optional
        If True, event positions are not randomized within the pixels 
        within which they are detected. Default: False
    prng : :class:`~numpy.random.RandomState` object, integer, or None
        A pseudo-random number generator. Typically will only 
        be specified if you have a reason to generate the same 
        set of random numbers, such as for a test. Default is None, 
        which sets the seed based on the system time. 
    """
    import pyregion._region_filter as rfilter
    exp_time = parse_value(exp_time, "s")
    roll_angle = parse_value(roll_angle, "deg")
    prng = parse_prng(prng)
    if isinstance(input_events, dict):
        parameters = {}
        for key in ["flux", "emin", "emax", "sources"]:
            parameters[key] = input_events[key]
        event_list = []
        for i in range(len(parameters["flux"])):
            edict = {}
            for key in ["ra", "dec", "energy"]:
                edict[key] = input_events[key][i]
            event_list.append(edict)
    elif isinstance(input_events, string_types):
        # Assume this is a SIMPUT catalog
        event_list, parameters = read_simput_catalog(input_events)

    try:
        instrument_spec = instrument_registry[instrument]
    except KeyError:
        raise KeyError("Instrument %s is not in the instrument registry!" % instrument)
    if not instrument_spec["imaging"]:
        raise RuntimeError("Instrument '%s' is not " % instrument_spec["name"] +
                           "designed for imaging observations!")

    arf_file = get_response_path(instrument_spec["arf"])
    rmf_file = get_response_path(instrument_spec["rmf"])
    arf = AuxiliaryResponseFile(arf_file)
    rmf = RedistributionMatrixFile(rmf_file)

    nx = instrument_spec["num_pixels"]
    plate_scale = instrument_spec["fov"]/nx/60. # arcmin to deg
    plate_scale_arcsec = plate_scale * 3600.0

    if not instrument_spec["dither"]:
        dither_on = False
    else:
        dither_on = not no_dither
    if dither_params is None:
        dither_params = [8.0, 8.0, 1000.0, 707.0]
    dither_dict = {"x_amp": dither_params[0],
                   "y_amp": dither_params[1],
                   "x_period": dither_params[2],
                   "y_period": dither_params[3],
                   "dither_on": dither_on,
                   "plate_scale": plate_scale_arcsec}

    event_params = {}
    event_params["exposure_time"] = exp_time
    event_params["arf"] = arf.filename
    event_params["sky_center"] = sky_center
    event_params["pix_center"] = np.array([0.5*(2*nx+1)]*2)
    event_params["num_pixels"] = nx
    event_params["plate_scale"] = plate_scale
    event_params["rmf"] = rmf.filename
    event_params["channel_type"] = rmf.header["CHANTYPE"]
    event_params["telescope"] = rmf.header["TELESCOP"]
    event_params["instrument"] = instrument_spec['name']
    event_params["mission"] = rmf.header.get("MISSION", "")
    event_params["nchan"] = rmf.n_ch
    event_params["roll_angle"] = roll_angle
    event_params["fov"] = instrument_spec["fov"]
    event_params["chan_lim"] = [rmf.cmin, rmf.cmax]
    event_params["chips"] = instrument_spec["chips"]
    event_params["dither_params"] = dither_dict
    event_params["aimpt_coords"] = instrument_spec["aimpt_coords"]

    w = pywcs.WCS(naxis=2)
    w.wcs.crval = event_params["sky_center"]
    w.wcs.crpix = event_params["pix_center"]
    w.wcs.cdelt = [-plate_scale, plate_scale]
    w.wcs.ctype = ["RA---TAN","DEC--TAN"]
    w.wcs.cunit = ["deg"]*2

    rot_mat = get_rot_mat(roll_angle)

    all_events = defaultdict(list)

    for i, evts in enumerate(event_list):

        mylog.info("Detecting events from source %s." % parameters["sources"][i])

        # Step 1: Use ARF to determine which photons are observed

        mylog.info("Applying energy-dependent effective area from %s." % os.path.split(arf.filename)[-1])
        refband = [parameters["emin"][i], parameters["emax"][i]]
        events = arf.detect_events(evts, exp_time, parameters["flux"][i], refband, prng=prng)

        n_evt = events["energy"].size

        if n_evt == 0:
            mylog.warning("No events were observed for this source!!!")
        else:

            # Step 2: Assign pixel coordinates to events. Apply dithering and
            # PSF. Clip events that don't fall within the detection region.

            mylog.info("Pixeling events.")

            # Convert RA, Dec to pixel coordinates
            xpix, ypix = w.wcs_world2pix(events["ra"], events["dec"], 1)

            xpix -= event_params["pix_center"][0]
            ypix -= event_params["pix_center"][1]

            events.pop("ra")
            events.pop("dec")

            n_evt = xpix.size

            # Rotate physical coordinates to detector coordinates

            det = np.dot(rot_mat, np.array([xpix, ypix]))
            detx = det[0,:] + event_params["aimpt_coords"][0]
            dety = det[1,:] + event_params["aimpt_coords"][1]

            # Add times to events
            events['time'] = prng.uniform(size=n_evt, low=0.0,
                                          high=event_params["exposure_time"])

            # Apply dithering

            x_offset, y_offset = perform_dither(events["time"], dither_dict)

            detx -= x_offset
            dety -= y_offset

            # PSF scattering of detector coordinates

            if instrument_spec["psf"] is not None:
                psf_type, psf_spec = instrument_spec["psf"]
                if psf_type == "gaussian":
                    sigma = psf_spec/sigma_to_fwhm/plate_scale_arcsec
                    detx += prng.normal(loc=0.0, scale=sigma, size=n_evt)
                    dety += prng.normal(loc=0.0, scale=sigma, size=n_evt)
                else:
                    raise NotImplementedError("PSF type %s not implemented!" % psf_type)

            # Convert detector coordinates to chip coordinates.
            # Throw out events that don't fall on any chip.

            cx = np.trunc(detx)+0.5*np.sign(detx)
            cy = np.trunc(dety)+0.5*np.sign(dety)

            if event_params["chips"] is None:
                events["chip_id"] = np.zeros(n_evt, dtype='int')
                keepx = np.logical_and(cx >= -0.5*nx, cx <= 0.5*nx)
                keepy = np.logical_and(cy >= -0.5*nx, cy <= 0.5*nx)
                keep = np.logical_and(keepx, keepy)
            else:
                events["chip_id"] = -np.ones(n_evt, dtype='int')
                for i, chip in enumerate(event_params["chips"]):
                    thisc = np.ones(n_evt, dtype='bool')
                    rtype = chip[0]
                    args = chip[1:]
                    r = getattr(rfilter, rtype)(*args)
                    inside = r.inside(cx, cy)
                    thisc = np.logical_and(thisc, inside)
                    events["chip_id"][thisc] = i
                keep = events["chip_id"] > -1

            mylog.info("%d events were rejected because " % (n_evt-keep.sum()) +
                       "they do not fall on any CCD.")
            n_evt = keep.sum()

            if n_evt == 0:
                mylog.warning("No events are within the field of view for this source!!!")
            else:

                # Keep only those events which fall on a chip

                for key in events:
                    events[key] = events[key][keep]

                # Convert chip coordinates back to detector coordinates, unless the
                # user has specified that they want subpixel resolution

                if subpixel_res:
                    events["detx"] = detx[keep]
                    events["dety"] = dety[keep]
                else:
                    events["detx"] = cx[keep] + prng.uniform(low=-0.5, high=0.5, size=n_evt)
                    events["dety"] = cy[keep] + prng.uniform(low=-0.5, high=0.5, size=n_evt)

                # Convert detector coordinates back to pixel coordinates by
                # adding the dither offsets back in and applying the rotation
                # matrix again

                det = np.array([events["detx"] + x_offset[keep] - event_params["aimpt_coords"][0],
                                events["dety"] + y_offset[keep] - event_params["aimpt_coords"][1]])
                pix = np.dot(rot_mat.T, det)

                events["xpix"] = pix[0,:] + event_params['pix_center'][0]
                events["ypix"] = pix[1,:] + event_params['pix_center'][1]

        if n_evt > 0:
            for key in events:
                all_events[key] = np.concatenate([all_events[key], events[key]])

    if len(all_events["energy"]) == 0:
        mylog.warning("No events from any of the sources in the catalog were detected!")
        for key in ["xpix", "ypix", "detx", "dety", "time", "chip_id", event_params["channel_type"]]:
            all_events[key] = np.array([])
    else:
        # Step 4: Scatter energies with RMF
        mylog.info("Scattering energies with RMF %s." % os.path.split(rmf.filename)[-1])
        all_events = rmf.scatter_energies(all_events, prng=prng)

    return all_events, event_params
コード例 #9
0
def add_instrument_to_registry(inst_spec):
    """
    Add an instrument specification to the registry, contained
    in either a dictionary or a JSON file.

    The *inst_spec* must have the structure as shown below. 
    The order is not important. If you use a JSON file, the
    structure is the same, but the file cannot include comments,
    and use "null" instead of "None", and "true" or "false"
    instead of "True" or "False".

    For the "chips" entry, "None" means no chips and the detector
    field of view is a single square. If you want to have multiple
    chips, they must be specified in a format described in the 
    online documentation.

    >>> {
    ...     "name": "lynx_hdxi", # The short name of the instrument
    ...     "arf": "xrs_hdxi_3x10.arf", # The file containing the ARF
    ...     "rmf": "xrs_hdxi.rmf", # The file containing the RMF
    ...     "bkgnd": ["lynx_hdxi_particle_bkgnd.pha", 1.0], # The name of the particle background file and the area of extraction
    ...     "fov": 20.0, # The field of view in arcminutes
    ...     "focal_length": 10.0, # The focal length in meters
    ...     "num_pixels": 4096, # The number of pixels on a side in the FOV
    ...     "dither": True, # Whether or not to dither the instrument
    ...     "psf": ["image", "chandra_psf.fits", 6], # The type of PSF and associated parameters
    ...     "chips": [["Box", 0, 0, 4096, 4096]], # The specification for the chips
    ...     "aimpt_coords": [0.0, 0.0], # The detector coordinates of the aimpoint
    ...     "imaging": True # Whether or not this is a imaging instrument
    ...     "grating": False # Whether or not this is a grating instrument
    ... }
    """
    if isinstance(inst_spec, dict):
        inst = inst_spec
    elif os.path.exists(inst_spec):
        with open(inst_spec, "r") as f:
            inst = json.load(f)
    name = inst["name"]
    if name in instrument_registry:
        raise KeyError(f"The instrument with name {name} is already in the "
                       f"registry! Assign a different name!")
    # Catch older JSON files which don't distinguish between imagings
    # and non-imagings
    if "imaging" not in inst:
        mylog.warning("Instrument specifications must now include an 'imaging' "
                      "item, which determines whether or not this instrument "
                      "specification supports imaging. Default is True.")
        inst["imaging"] = True
    if "grating" not in inst:
        mylog.warning("Instrument specifications must now include an 'grating' "
                      "item, which determines whether or not this instrument "
                      "specification corresponds to a gratings instrument. "
                      "Default is False.")
        inst["grating"] = False
    if inst["grating"] and inst["imaging"]:
        raise RuntimeError("Currently, gratings instrument specifications cannot "
                           "have 'imaging' == True!")
    if inst['imaging']:
        default_set = {"name", "arf", "rmf", "bkgnd", "fov", "chips",
                       "aimpt_coords", "focal_length", "num_pixels",
                       "dither", "psf", "imaging", "grating"}
    else:
        default_set = {"name", "arf", "rmf", "bkgnd", "focal_length", 
                       "imaging", "grating"}
    my_keys = set(inst.keys())
    if my_keys != default_set:
        missing = default_set.difference(my_keys)
        raise RuntimeError(f"One or more items is missing from the instrument "
                           f"specification!\nItems needed: {missing}")
    instrument_registry[name] = inst
    mylog.debug(f"The {name} instrument specification has been added "
                f"to the instrument registry.")
    return name
コード例 #10
0
def add_instrument_to_registry(inst_spec):
    """
    Add an instrument specification to the registry, contained
    in either a dictionary or a JSON file.

    The *inst_spec* must have the structure as shown below. 
    The order is not important. If you use a JSON file, the
    structure is the same, but the file cannot include comments,
    and use "null" instead of "None", and "true" or "false"
    instead of "True" or "False".

    For the "chips" entry, "None" means no chips and the detector
    field of view is a single square. If you want to have multiple
    chips, they must be specified in a format described in the 
    online documentation.

    >>> {
    ...     "name": "lynx_hdxi", # The short name of the instrument
    ...     "arf": "xrs_hdxi_3x10.arf", # The file containing the ARF
    ...     "rmf": "xrs_hdxi.rmf", # The file containing the RMF
    ...     "bkgnd": "acisi", # The name of the particle background
    ...     "fov": 20.0, # The field of view in arcminutes
    ...     "focal_length": 10.0, # The focal length in meters
    ...     "num_pixels": 4096, # The number of pixels on a side in the FOV
    ...     "dither": True, # Whether or not to dither the instrument
    ...     "psf": ["gaussian", 0.5], # The type of PSF and its HPD
    ...     "chips": None, # The specification for the chips
    ...     "aimpt_coords": [0.0, 0.0], # The detector coordinates of the aimpoint
    ...     "imaging": True # Whether or not this is a imaging instrument
    ...     "grating": False # Whether or not this is a grating instrument
    ... }
    """
    if isinstance(inst_spec, dict):
        inst = inst_spec
    elif os.path.exists(inst_spec):
        f = open(inst_spec, "r")
        inst = json.load(f)
        f.close()
    name = inst["name"]
    if name in instrument_registry:
        raise KeyError(
            "The instrument with name %s is already in the registry! Assign a different name!"
            % name)
    # Catch older JSON files which don't distinguish between imagings and non-imagings
    if "imaging" not in inst:
        mylog.warning(
            "Instrument specifications must now include an 'imaging' item, which "
            "determines whether or not this instrument specification supports "
            "imaging. Default is True.")
        inst["imaging"] = True
    if "grating" not in inst:
        mylog.warning(
            "Instrument specifications must now include an 'grating' item, which "
            "determines whether or not this instrument specification corresponds "
            "to a gratings instrument. Default is False.")
        inst["grating"] = False
    if inst["grating"] and inst["imaging"]:
        raise RuntimeError(
            "Currently, gratings instrument specifications cannot have "
            "'imaging' == True!")
    if inst['imaging']:
        # Catch older JSON files without chip definitions
        if "chips" not in inst:
            mylog.warning(
                "Instrument specifications must now include a 'chips' item, which details "
                "the layout of the chips if there are more that one. Assuming None for "
                "one chip that covers the entire field of view.")
            inst["chips"] = None
        # Catch older JSON files without aimpoint coordinates
        if "aimpt_coords" not in inst:
            mylog.warning(
                "Instrument specifications must now include a 'aimpt_coords' item, which "
                "details the position in detector coordinates of the nominal aimpoint. "
                "Assuming [0.0, 0.0].")
            inst["aimpt_coords"] = [0.0, 0.0]
        default_set = {
            "name", "arf", "rmf", "bkgnd", "fov", "chips", "aimpt_coords",
            "focal_length", "num_pixels", "dither", "psf", "imaging", "grating"
        }
    else:
        default_set = {
            "name", "arf", "rmf", "bkgnd", "focal_length", "imaging", "grating"
        }
    my_keys = set(inst.keys())
    # Don't check things we don't need
    if "dep_name" in my_keys:
        my_keys.remove("dep_name")
    if my_keys != default_set:
        missing = default_set.difference(my_keys)
        raise RuntimeError(
            "One or more items is missing from the instrument specification!\n"
            "Items needed: %s" % missing)
    instrument_registry[name] = inst
    mylog.debug(
        "The %s instrument specification has been added to the instrument registry."
        % name)
    return name
コード例 #11
0
def add_instrument_to_registry(inst_spec):
    """
    Add an instrument specification to the registry, contained
    in either a dictionary or a JSON file.

    The *inst_spec* must have the structure as shown below. 
    The order is not important. If you use a JSON file, the
    structure is the same, but the file cannot include comments,
    and use "null" instead of "None", and "true" or "false"
    instead of "True" or "False".

    For the "chips" entry, "None" means no chips and the detector
    field of view is a single square. If you want to have multiple
    chips, they must be specified in a format described in the 
    online documentation.

    >>> {
    ...     "name": "lynx_hdxi", # The short name of the instrument
    ...     "arf": "xrs_hdxi_3x10.arf", # The file containing the ARF
    ...     "rmf": "xrs_hdxi.rmf", # The file containing the RMF
    ...     "bkgnd": "acisi", # The name of the particle background
    ...     "fov": 20.0, # The field of view in arcminutes
    ...     "focal_length": 10.0, # The focal length in meters
    ...     "num_pixels": 4096, # The number of pixels on a side in the FOV
    ...     "dither": True, # Whether or not to dither the instrument
    ...     "psf": ["gaussian", 0.5], # The type of PSF and its HPD
    ...     "chips": None, # The specification for the chips
    ...     "aimpt_coords": [0.0, 0.0], # The detector coordinates of the aimpoint
    ...     "imaging": True # Whether or not this is a imaging instrument
    ...     "grating": False # Whether or not this is a grating instrument
    ... }
    """
    if isinstance(inst_spec, dict):
        inst = inst_spec
    elif os.path.exists(inst_spec):
        f = open(inst_spec, "r")
        inst = json.load(f)
        f.close()
    name = inst["name"]
    if name in instrument_registry:
        raise KeyError("The instrument with name %s is already in the registry! Assign a different name!" % name)
    # Catch older JSON files which don't distinguish between imagings and non-imagings
    if "imaging" not in inst:
        mylog.warning("Instrument specifications must now include an 'imaging' item, which "
                      "determines whether or not this instrument specification supports "
                      "imaging. Default is True.")
        inst["imaging"] = True
    if "grating" not in inst:
        mylog.warning("Instrument specifications must now include an 'grating' item, which "
                      "determines whether or not this instrument specification corresponds "
                      "to a gratings instrument. Default is False.")
        inst["grating"] = False
    if inst["grating"] and inst["imaging"]:
        raise RuntimeError("Currently, gratings instrument specifications cannot have "
                           "'imaging' == True!")
    if inst['imaging']:
        # Catch older JSON files without chip definitions
        if "chips" not in inst:
            mylog.warning("Instrument specifications must now include a 'chips' item, which details "
                          "the layout of the chips if there are more that one. Assuming None for "
                          "one chip that covers the entire field of view.")
            inst["chips"] = None
        # Catch older JSON files without aimpoint coordinates
        if "aimpt_coords" not in inst:
            mylog.warning("Instrument specifications must now include a 'aimpt_coords' item, which "
                          "details the position in detector coordinates of the nominal aimpoint. "
                          "Assuming [0.0, 0.0].")
            inst["aimpt_coords"] = [0.0, 0.0]
        default_set = {"name", "arf", "rmf", "bkgnd", "fov", "chips",
                       "aimpt_coords", "focal_length", "num_pixels",
                       "dither", "psf", "imaging", "grating"}
    else:
        default_set = {"name", "arf", "rmf", "bkgnd", "focal_length", "imaging", "grating"}
    my_keys = set(inst.keys())
    # Don't check things we don't need
    my_keys.remove("dep_name")
    if my_keys != default_set:
        missing = default_set.difference(my_keys)
        raise RuntimeError("One or more items is missing from the instrument specification!\n"
                           "Items needed: %s" % missing)
    instrument_registry[name] = inst
    mylog.debug("The %s instrument specification has been added to the instrument registry." % name)
    return name
コード例 #12
0
ファイル: events.py プロジェクト: jzuhone/xrs_utils
def make_exposure_map(event_file, expmap_file, energy, weights=None,
                      asol_file=None, normalize=True, overwrite=False,
                      reblock=1, nhistx=16, nhisty=16, order=1):
    """
    Make an exposure map for a SOXS event file, and optionally write
    an aspect solution file. The exposure map will be created by
    binning an aspect histogram over the range of the aspect solution.

    Parameters
    ----------
    event_file : string
        The path to the event file to use for making the exposure map.
    expmap_file : string
        The path to write the exposure map file to.
    energy : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, or NumPy array
        The energy in keV to use when computing the exposure map, or 
        a set of energies to be used with the *weights* parameter. If
        providing a set, it must be in keV.
    weights : array-like, optional
        The weights to use with a set of energies given in the
        *energy* parameter. Used to create a more accurate exposure
        map weighted by a range of energies. Default: None
    asol_file : string, optional
        The path to write the aspect solution file to, if desired.
        Default: None
    normalize : boolean, optional
        If True, the exposure map will be divided by the exposure time
        so that the map's units are cm**2. Default: True
    overwrite : boolean, optional
        Whether or not to overwrite an existing file. Default: False
    reblock : integer, optional
        Supply an integer power of 2 here to make an exposure map 
        with a different binning. Default: 1
    nhistx : integer, optional
        The number of bins in the aspect histogram in the DETX
        direction. Default: 16
    nhisty : integer, optional
        The number of bins in the aspect histogram in the DETY
        direction. Default: 16
    order : integer, optional
        The interpolation order to use when making the exposure map. 
        Default: 1
    """
    import pyregion._region_filter as rfilter
    from scipy.ndimage.interpolation import rotate, shift
    from soxs.instrument import AuxiliaryResponseFile, perform_dither
    if isinstance(energy, np.ndarray) and weights is None:
        raise RuntimeError("Must supply a single value for the energy if "
                           "you do not supply weights!")
    if not isinstance(energy, np.ndarray):
        energy = parse_value(energy, "keV")
    f_evt = pyfits.open(event_file)
    hdu = f_evt["EVENTS"]
    arf = AuxiliaryResponseFile(hdu.header["ANCRFILE"])
    exp_time = hdu.header["EXPOSURE"]
    nx = int(hdu.header["TLMAX2"]-0.5)//2
    ny = int(hdu.header["TLMAX3"]-0.5)//2
    ra0 = hdu.header["TCRVL2"]
    dec0 = hdu.header["TCRVL3"]
    xdel = hdu.header["TCDLT2"]
    ydel = hdu.header["TCDLT3"]
    x0 = hdu.header["TCRPX2"]
    y0 = hdu.header["TCRPX3"]
    xdet0 = 0.5*(2*nx+1)
    ydet0 = 0.5*(2*ny+1)
    xaim = hdu.header.get("AIMPT_X", 0.0)
    yaim = hdu.header.get("AIMPT_Y", 0.0)
    roll = hdu.header["ROLL_PNT"]
    instr = instrument_registry[hdu.header["INSTRUME"].lower()]
    dither_params = {}
    if "DITHXAMP" in hdu.header:
        dither_params["x_amp"] = hdu.header["DITHXAMP"]
        dither_params["y_amp"] = hdu.header["DITHYAMP"]
        dither_params["x_period"] = hdu.header["DITHXPER"]
        dither_params["y_period"] = hdu.header["DITHYPER"]
        dither_params["plate_scale"] = ydel*3600.0
        dither_params["dither_on"] = True
    else:
        dither_params["dither_on"] = False
    f_evt.close()

    # Create time array for aspect solution
    dt = 1.0 # Seconds
    t = np.arange(0.0, exp_time+dt, dt)

    # Construct WCS
    w = pywcs.WCS(naxis=2)
    w.wcs.crval = [ra0, dec0]
    w.wcs.crpix = [x0, y0]
    w.wcs.cdelt = [xdel, ydel]
    w.wcs.ctype = ["RA---TAN","DEC--TAN"]
    w.wcs.cunit = ["deg"]*2

    # Create aspect solution if we had dithering.
    # otherwise just set the offsets to zero
    if dither_params["dither_on"]:
        x_off, y_off = perform_dither(t, dither_params)
        # Make the aspect histogram
        x_amp = dither_params["x_amp"]/dither_params["plate_scale"]
        y_amp = dither_params["y_amp"]/dither_params["plate_scale"]
        x_edges = np.linspace(-x_amp, x_amp, nhistx+1, endpoint=True)
        y_edges = np.linspace(-y_amp, y_amp, nhisty+1, endpoint=True)
        asphist = np.histogram2d(x_off, y_off, (x_edges, y_edges))[0]
        asphist *= dt
        x_mid = 0.5*(x_edges[1:]+x_edges[:-1])/reblock
        y_mid = 0.5*(y_edges[1:]+y_edges[:-1])/reblock

    # Determine the effective area
    eff_area = arf.interpolate_area(energy).value
    if weights is not None:
        eff_area = np.average(eff_area, weights=weights)

    if instr["chips"] is None:
        rtypes = ["Box"]
        args = [[0.0, 0.0, instr["num_pixels"], instr["num_pixels"]]]
    else:
        rtypes = []
        args = []
        for i, chip in enumerate(instr["chips"]):
            rtypes.append(chip[0])
            args.append(np.array(chip[1:]))

    tmpmap = np.zeros((2*nx, 2*ny))

    for rtype, arg in zip(rtypes, args):
        rfunc = getattr(rfilter, rtype)
        new_args = parse_region_args(rtype, arg, xdet0-xaim-1.0, ydet0-yaim-1.0)
        r = rfunc(*new_args)
        tmpmap += r.mask(tmpmap).astype("float64")

    tmpmap = downsample(tmpmap, reblock)

    if dither_params["dither_on"]:
        expmap = np.zeros(tmpmap.shape)
        niter = nhistx*nhisty
        pbar = tqdm(leave=True, total=niter, desc="Creating exposure map ")
        for i in range(nhistx):
            for j in range(nhisty):
                expmap += shift(tmpmap, (x_mid[i], y_mid[j]), order=order)*asphist[i, j]
            pbar.update(nhisty)
        pbar.close()
    else:
        expmap = tmpmap*exp_time

    expmap *= eff_area
    if normalize:
        expmap /= exp_time

    if roll != 0.0:
        rotate(expmap, roll, output=expmap, reshape=False)

    expmap[expmap < 0.0] = 0.0

    map_header = {"EXPOSURE": exp_time,
                  "MTYPE1": "EQPOS",
                  "MFORM1": "RA,DEC",
                  "CTYPE1": "RA---TAN",
                  "CTYPE2": "DEC--TAN",
                  "CRVAL1": ra0,
                  "CRVAL2": dec0,
                  "CUNIT1": "deg",
                  "CUNIT2": "deg",
                  "CDELT1": xdel*reblock,
                  "CDELT2": ydel*reblock,
                  "CRPIX1": 0.5*(2.0*nx//reblock+1),
                  "CRPIX2": 0.5*(2.0*ny//reblock+1)}

    map_hdu = pyfits.ImageHDU(expmap, header=pyfits.Header(map_header))
    map_hdu.name = "EXPMAP"
    map_hdu.writeto(expmap_file, overwrite=overwrite)

    if asol_file is not None:

        if dither_params["dither_on"]:

            det = np.array([x_off, y_off])

            pix = np.dot(get_rot_mat(roll).T, det)

            ra, dec = w.wcs_pix2world(pix[0,:]+x0, pix[1,:]+y0, 1)

            col_t = pyfits.Column(name='time', format='D', unit='s', array=t)
            col_ra = pyfits.Column(name='ra', format='D', unit='deg', array=ra)
            col_dec = pyfits.Column(name='dec', format='D', unit='deg', array=dec)

            coldefs = pyfits.ColDefs([col_t, col_ra, col_dec])
            tbhdu = pyfits.BinTableHDU.from_columns(coldefs)
            tbhdu.name = "ASPSOL"
            tbhdu.header["EXPOSURE"] = exp_time

            hdulist = [pyfits.PrimaryHDU(), tbhdu]

            pyfits.HDUList(hdulist).writeto(asol_file, overwrite=overwrite)

        else:

            mylog.warning("Refusing to write an aspect solution file because "
                          "there was no dithering.")