def generate_energies(self, t_exp, area, prng=None, quiet=False): """ Generate photon energies from this spectrum given an exposure time and effective area. Parameters ---------- t_exp : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The exposure time in seconds. area : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The effective area in cm**2. If one is creating events for a SIMPUT file, a constant should be used and it must be large enough so that a sufficiently large sample is drawn for the ARF. prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. quiet : boolean, optional If True, log messages will not be displayed when creating energies. Useful if you have to loop over a lot of spectra. Default: False """ t_exp = parse_value(t_exp, "s") area = parse_value(area, "cm**2") prng = parse_prng(prng) rate = area*self.total_flux.value energy = _generate_energies(self, t_exp, rate, prng, quiet=quiet) flux = np.sum(energy)*erg_per_keV/t_exp/area energies = Energies(energy, flux) return energies
def _from_xspec(cls, xspec_in, emin, emax, nbins): emin = parse_value(emin, "keV") emax = parse_value(emax, "keV") tmpdir = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(tmpdir) xspec_in.append("dummyrsp %g %g %d lin\n" % (emin, emax, nbins)) xspec_in += ["set fp [open spec_therm.xspec w+]\n", "tclout energies\n", "puts $fp $xspec_tclout\n", "tclout modval\n", "puts $fp $xspec_tclout\n", "close $fp\n", "quit\n"] f_xin = open("xspec.in", "w") f_xin.writelines(xspec_in) f_xin.close() logfile = os.path.join(curdir, "xspec.log") with open(logfile, "ab") as xsout: subprocess.call(["xspec", "-", "xspec.in"], stdout=xsout, stderr=xsout) f_s = open("spec_therm.xspec", "r") lines = f_s.readlines() f_s.close() ebins = np.array(lines[0].split()).astype("float64") de = np.diff(ebins)[0] flux = np.array(lines[1].split()).astype("float64")/de os.chdir(curdir) shutil.rmtree(tmpdir) return cls(ebins, flux)
def rescale_flux(self, new_flux, emin=None, emax=None, flux_type="photons"): """ Rescale the flux of the spectrum, optionally using a specific energy band. Parameters ---------- new_flux : float The new flux in units of photons/s/cm**2. emin : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The minimum energy of the band to consider, in keV. Default: Use the minimum energy of the entire spectrum. emax : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The maximum energy of the band to consider, in keV. Default: Use the maximum energy of the entire spectrum. flux_type : string, optional The units of the flux to use in the rescaling: "photons": photons/s/cm**2 "energy": erg/s/cm**2 """ if emin is None: emin = self.ebins[0].value if emax is None: emax = self.ebins[-1].value emin = parse_value(emin, "keV") emax = parse_value(emax, 'keV') idxs = np.logical_and(self.emid.value >= emin, self.emid.value <= emax) if flux_type == "photons": f = self.flux[idxs].sum()*self.de elif flux_type == "energy": f = (self.flux*self.emid.to("erg"))[idxs].sum()*self.de self.flux *= new_flux/f.value self._compute_total_flux()
def from_models(cls, name, spectral_model, spatial_model, t_exp, area, prng=None): """ Generate a single photon list from a spectral and a spatial model. Parameters ---------- name : string The name of the photon list. This will also be the prefix of any photon list file that is written from this photon list. spectral_model : :class:`~soxs.spectra.Spectrum` The spectral model to use to generate the event energies. spatial_model : :class:`~soxs.spatial.SpatialModel` The spatial model to use to generate the event coordinates. t_exp : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The exposure time in seconds. area : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The effective area in cm**2. If one is creating events for a SIMPUT file, a constant should be used and it must be large enough so that a sufficiently large sample is drawn for the ARF. prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. """ prng = parse_prng(prng) t_exp = parse_value(t_exp, "s") area = parse_value(area, "cm**2") e = spectral_model.generate_energies(t_exp, area, prng=prng) ra, dec = spatial_model.generate_coords(e.size, prng=prng) return cls(name, ra, dec, e, e.flux)
def add_emission_line(self, line_center, line_width, line_amp, line_type="gaussian"): """ Add an emission line to this spectrum. Parameters ---------- line_center : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The line center position in units of keV, in the observer frame. line_width : one or more float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The line width (FWHM) in units of keV, in the observer frame. Can also input the line width in units of velocity in the rest frame. For the Voigt profile, a list, tuple, or array of two values should be provided since there are two line widths, the Lorentzian and the Gaussian (in that order). line_amp : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The integrated line amplitude in the units of the flux line_type : string, optional The line profile type. Default: "gaussian" """ line_center = parse_value(line_center, "keV") line_width = parse_value(line_width, "keV", equivalence=line_width_equiv(line_center)) line_amp = parse_value(line_amp, self._units) if line_type == "gaussian": sigma = line_width / sigma_to_fwhm line_amp /= sqrt2pi * sigma f = Gaussian1D(line_amp, line_center, sigma) else: raise NotImplementedError("Line profile type '%s' " % line_type + "not implemented!") self.flux += u.Quantity(f(self.emid.value), self._units) self._compute_total_flux()
def add_absorption_line(self, line_center, line_width, equiv_width, line_type='gaussian'): """ Add an absorption line to this spectrum. Parameters ---------- line_center : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The line center position in units of keV, in the observer frame. line_width : one or more float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The line width (FWHM) in units of keV, in the observer frame. Can also input the line width in units of velocity in the rest frame. For the Voigt profile, a list, tuple, or array of two values should be provided since there are two line widths, the Lorentzian and the Gaussian (in that order). equiv_width : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The equivalent width of the line, in units of milli-Angstrom line_type : string, optional The line profile type. Default: "gaussian" """ line_center = parse_value(line_center, "keV") line_width = parse_value(line_width, "keV", equivalence=line_width_equiv(line_center)) equiv_width = parse_value(equiv_width, "1.0e-3*angstrom") # in milliangstroms equiv_width *= 1.0e-3 # convert to angstroms if line_type == "gaussian": sigma = line_width / sigma_to_fwhm B = equiv_width*line_center*line_center B /= hc * sqrt2pi * sigma f = Gaussian1D(B, line_center, sigma) else: raise NotImplementedError("Line profile type '%s' " % line_type + "not implemented!") self.flux *= np.exp(-f(self.emid.value)) self._compute_total_flux()
def generate_fluxes(exp_time, area, fov, prng): from soxs.data import cdf_fluxes, cdf_gal, cdf_agn exp_time = parse_value(exp_time, "s") area = parse_value(area, "cm**2") fov = parse_value(fov, "arcmin") logf = np.log10(cdf_fluxes) n_gal = np.rint(cdf_gal[-1]) n_agn = np.rint(cdf_agn[-1]) F_gal = cdf_gal / cdf_gal[-1] F_agn = cdf_agn / cdf_agn[-1] f_gal = InterpolatedUnivariateSpline(F_gal, logf) f_agn = InterpolatedUnivariateSpline(F_agn, logf) eph_mean_erg = 1.0*erg_per_keV S_min_obs = eph_mean_erg/(exp_time*area) mylog.debug("Flux of %g erg/cm^2/s gives roughly " "one photon during exposure." % S_min_obs) fov_area = fov**2 n_gal = int(n_gal*fov_area/3600.0) n_agn = int(n_agn*fov_area/3600.0) mylog.debug("%d AGN, %d galaxies in the FOV." % (n_agn, n_gal)) randvec1 = prng.uniform(size=n_agn) agn_fluxes = 10**f_agn(randvec1) randvec2 = prng.uniform(size=n_gal) gal_fluxes = 10**f_gal(randvec2) return agn_fluxes, gal_fluxes
def generate_energies(self, t_exp, fov, prng=None, quiet=False): """ Generate photon energies from this convolved background spectrum given an exposure time and field of view. Parameters ---------- t_exp : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The exposure time in seconds. fov : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The width of the field of view on a side in arcminutes. prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. quiet : boolean, optional If True, log messages will not be displayed when creating energies. Useful if you have to loop over a lot of spectra. Default: False """ t_exp = parse_value(t_exp, "s") fov = parse_value(fov, "arcmin") prng = parse_prng(prng) rate = fov*fov*self.total_flux.value energy = _generate_energies(self, t_exp, rate, prng, quiet=quiet) earea = self.arf.interpolate_area(energy).value flux = np.sum(energy)*erg_per_keV/t_exp/earea.sum() energies = Energies(energy, flux) return energies
def _spectrum_init(self, kT, velocity, elem_abund): kT = parse_value(kT, "keV") velocity = parse_value(velocity, "km/s") v = velocity*1.0e5 tindex = np.searchsorted(self.Tvals, kT)-1 dT = (kT-self.Tvals[tindex])/self.dTvals[tindex] return kT, dT, tindex, v
def from_powerlaw(cls, photon_index, redshift, norm, emin, emax, nbins): """ Create a spectrum from a power-law model. Parameters ---------- photon_index : float The photon index of the source. redshift : float The redshift of the source. norm : float The normalization of the source in units of photons/s/cm**2/keV at 1 keV in the source frame. emin : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The minimum energy of the spectrum in keV. emax : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The maximum energy of the spectrum in keV. nbins : integer The number of bins in the spectrum. """ emin = parse_value(emin, 'keV') emax = parse_value(emax, 'keV') ebins = np.linspace(emin, emax, nbins+1) emid = 0.5*(ebins[1:]+ebins[:-1]) flux = norm*(emid*(1.0+redshift))**(-photon_index) return cls(ebins, flux)
def from_powerlaw(cls, photon_index, redshift, norm, emin=0.01, emax=50.0, nbins=10000): """ Create a spectrum from a power-law model. Parameters ---------- photon_index : float The photon index of the source. redshift : float The redshift of the source. norm : float The normalization of the source in units of photons/s/cm**2/keV at 1 keV in the source frame. emin : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The minimum energy of the spectrum in keV. Default: 0.01 emax : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The maximum energy of the spectrum in keV. Default: 50.0 nbins : integer, optional The number of bins in the spectrum. Default: 10000 """ emin = parse_value(emin, 'keV') emax = parse_value(emax, 'keV') ebins = np.linspace(emin, emax, nbins+1) emid = 0.5*(ebins[1:]+ebins[:-1]) flux = norm*(emid*(1.0+redshift))**(-photon_index) return cls(ebins, flux)
def get_flux_in_band(self, emin, emax): """ Determine the total flux within a band specified by an energy range. Parameters ---------- emin : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The minimum energy in the band, in keV. emax : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The maximum energy in the band, in keV. Returns ------- A tuple of values for the flux/intensity in the band: the first value is in terms of the photon rate, the second value is in terms of the energy rate. """ emin = parse_value(emin, "keV") emax = parse_value(emax, "keV") range = np.logical_and(self.emid.value >= emin, self.emid.value <= emax) pflux = self.flux[range].sum() * self.de eflux = (self.flux * self.emid.to("erg"))[range].sum() * self.de / (1.0 * u.photon) return pflux, eflux
def __init__(self, ra0, dec0, r_in, r_out, num_events, theta=0.0, ellipticity=1.0, prng=None): r_in = parse_value(r_in, "arcsec") r_out = parse_value(r_out, "arcsec") def func(r): f = np.zeros(r.size) idxs = np.logical_and(r >= r_in, r < r_out) f[idxs] = 1.0 return f super(AnnulusModel, self).__init__(ra0, dec0, func, num_events, theta=theta, ellipticity=ellipticity, prng=prng)
def __init__(self, ra0, dec0, num_events): ra0 = parse_value(ra0, "deg") dec0 = parse_value(dec0, "deg") ra = ra0 * np.ones(num_events) dec = dec0 * np.ones(num_events) w = construct_wcs(ra0, dec0) zero_pos = np.zeros(num_events) super(PointSourceModel, self).__init__(ra, dec, zero_pos, zero_pos, w)
def __init__(self, ra0, dec0, r_c1, beta1, r_c2, beta2, sb_ratio, theta=0.0, ellipticity=1.0): r_c1 = parse_value(r_c1, "arcsec") r_c2 = parse_value(r_c2, "arcsec") func = lambda r: (1.0+(r/r_c1)**2)**(-3*beta1+0.5) + \ sb_ratio*(1.0+(r/r_c2)**2)**(-3*beta2+0.5) super(DoubleBetaModel, self).__init__(ra0, dec0, func, theta=theta, ellipticity=ellipticity)
def _new_spec_from_band(self, emin, emax): emin = parse_value(emin, "keV") emax = parse_value(emax, 'keV') band = np.logical_and(self.ebins.value >= emin, self.ebins.value <= emax) idxs = np.where(band)[0] ebins = self.ebins.value[idxs] flux = self.flux.value[idxs[:-1]] return ebins, flux
def to_scaled_spectrum(self, fov, focal_length=None): from soxs.instrument import FlatResponse fov = parse_value(fov, "arcmin") if focal_length is None: focal_length = self.default_focal_length else: focal_length = parse_value(focal_length, "m") flux = self.flux.value * fov * fov flux *= (focal_length / self.default_focal_length)**2 arf = FlatResponse(self.ebins.value[0], self.ebins.value[-1], 1.0, self.ebins.size - 1) return ConvolvedSpectrum(Spectrum(self.ebins.value, flux), arf)
def __init__(self, ra0, dec0, r_in, r_out, theta=0.0, ellipticity=1.0): r_in = parse_value(r_in, "arcsec") r_out = parse_value(r_out, "arcsec") def func(r): f = np.zeros(r.size) idxs = np.logical_and(r >= r_in, r < r_out) f[idxs] = 1.0 return f super(AnnulusModel, self).__init__(ra0, dec0, func, theta=theta, ellipticity=ellipticity)
def to_scaled_spectrum(self, fov, focal_length=None): from soxs.instrument import FlatResponse fov = parse_value(fov, "arcmin") if focal_length is None: focal_length = self.default_focal_length else: focal_length = parse_value(focal_length, "m") flux = self.flux.value*fov*fov flux *= (focal_length/self.default_focal_length)**2 arf = FlatResponse(self.ebins.value[0], self.ebins.value[-1], 1.0, self.ebins.size-1) return ConvolvedSpectrum(Spectrum(self.ebins.value, flux), arf)
def apply_foreground_absorption(self, nH, model="wabs", redshift=0.0): """ Given a hydrogen column density, apply galactic foreground absorption to the spectrum. Parameters ---------- nH : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The hydrogen column in units of 10**22 atoms/cm**2 model : string, optional The model for absorption to use. Options are "wabs" (Wisconsin, Morrison and McCammon; ApJ 270, 119) or "tbabs" (Tuebingen-Boulder, Wilms, J., Allen, A., & McCray, R. 2000, ApJ, 542, 914). Default: "wabs". redshift : float, optional The redshift of the absorbing material. Default: 0.0 """ nH = parse_value(nH, "1.0e22*cm**-2") e = self.emid.value*(1.0+redshift) if model == "wabs": sigma = wabs_cross_section(e) elif model == "tbabs": sigma = tbabs_cross_section(e) self.flux *= np.exp(-nH*1.0e22*sigma) self._compute_total_flux()
def convolve_spectrum(self, cspec, exp_time, noisy=True, prng=None): prng = parse_prng(prng) exp_time = parse_value(exp_time, "s") counts = cspec.flux.value * exp_time * cspec.de.value spec = np.histogram(cspec.emid.value, self.ebins, weights=counts)[0] conv_spec = np.zeros(self.n_ch) pbar = tqdm(leave=True, total=self.n_e, desc="Convolving spectrum ") if np.all(self.data["N_GRP"] == 1): # We can do things a bit faster if there is only one group each f_chan = ensure_numpy_array(np.nan_to_num(self.data["F_CHAN"])) n_chan = ensure_numpy_array(np.nan_to_num(self.data["N_CHAN"])) mat = np.nan_to_num(np.float64(self.data["MATRIX"])) mat_size = np.minimum(n_chan, self.n_ch-f_chan) for k in range(self.n_e): conv_spec[f_chan[k]:f_chan[k]+n_chan[k]] += spec[k]*mat[k,:mat_size[k]] pbar.update() else: # Otherwise, we have to go step-by-step for k in range(self.n_e): f_chan = ensure_numpy_array(np.nan_to_num(self.data["F_CHAN"][k])) n_chan = ensure_numpy_array(np.nan_to_num(self.data["N_CHAN"][k])) mat = np.nan_to_num(np.float64(self.data["MATRIX"][k])) mat_size = np.minimum(n_chan, self.n_ch-f_chan) for i, f in enumerate(f_chan): conv_spec[f:f+n_chan[i]] += spec[k]*mat[:mat_size[i]] pbar.update() pbar.close() if noisy: return prng.poisson(lam=conv_spec) else: return conv_spec
def generate_sources(fov, sky_center, prng=None): r""" Make a catalog of point sources. Parameters ---------- fov : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The field of view in arcminutes. sky_center : array-like The center RA, Dec of the field of view in degrees. prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. """ prng = parse_prng(prng) fov = parse_value(fov, "arcmin") agn_fluxes, gal_fluxes = generate_fluxes(fov, prng) fluxes = np.concatenate([agn_fluxes, gal_fluxes]) ind = np.concatenate([ get_agn_index(np.log10(agn_fluxes)), gal_index * np.ones(gal_fluxes.size) ]) ra0, dec0 = generate_positions(fluxes.size, fov, sky_center, prng) return ra0, dec0, fluxes, ind
def generate_fluxes(fov, prng): from soxs.data import cdf_fluxes, cdf_gal, cdf_agn prng = parse_prng(prng) fov = parse_value(fov, "arcmin") logf = np.log10(cdf_fluxes) n_gal = np.rint(cdf_gal[-1]) n_agn = np.rint(cdf_agn[-1]) F_gal = cdf_gal / cdf_gal[-1] F_agn = cdf_agn / cdf_agn[-1] f_gal = InterpolatedUnivariateSpline(F_gal, logf) f_agn = InterpolatedUnivariateSpline(F_agn, logf) fov_area = fov**2 n_gal = int(n_gal * fov_area / 3600.0) n_agn = int(n_agn * fov_area / 3600.0) mylog.debug(f"{n_agn} AGN, {n_gal} galaxies in the FOV.") randvec1 = prng.uniform(size=n_agn) agn_fluxes = 10**f_agn(randvec1) randvec2 = prng.uniform(size=n_gal) gal_fluxes = 10**f_gal(randvec2) return agn_fluxes, gal_fluxes
def get_spectrum(self, kT, abund, redshift, norm, velocity=0.0, elem_abund=None): """ Get a thermal emission spectrum. Parameters ---------- kT : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The temperature in keV. abund : float The metal abundance in solar units. redshift : float The redshift. norm : float The normalization of the model, in the standard Xspec units of 1.0e-14*EM/(4*pi*(1+z)**2*D_A**2). velocity : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The velocity broadening parameter, in units of km/s. Default: 0.0 elem_abund : dict of element name, float pairs A dictionary of elemental abundances to vary freely of the abund parameter. Default: None """ kT = parse_value(kT, "keV") velocity = parse_value(velocity, "km/s") v = velocity*1.0e5 if elem_abund is None: elem_abund = {} if set(elem_abund.keys()) != set(self.var_elem_names): raise RuntimeError("The supplied set of abundances is not the " "same as that was originally set!\n" "Free elements: %s\nAbundances: %s" % (set(elem_abund.keys()), set(self.var_elem_names))) tindex = np.searchsorted(self.Tvals, kT)-1 if tindex >= self.Tvals.shape[0]-1 or tindex < 0: return np.zeros(self.nbins) dT = (kT-self.Tvals[tindex])/self.dTvals[tindex] cspec, mspec, vspec = self._get_table([tindex, tindex+1], redshift, v) cosmic_spec = cspec[0,:]*(1.-dT)+cspec[1,:]*dT metal_spec = mspec[0,:]*(1.-dT)+mspec[1,:]*dT spec = cosmic_spec + abund*metal_spec if vspec is not None: for elem, eabund in elem_abund.items(): j = self.var_elem_names.index(elem) spec += eabund*(vspec[j,0,:]*(1.-dT)+vspec[j,1,:]*dT) spec = 1.0e14*norm*spec/self.de return Spectrum(self.ebins, spec)
def __init__(self, ra0, dec0, r_c, beta, theta=0.0, ellipticity=1.0): r_c = parse_value(r_c, "arcsec") func = lambda r: (1.0 + (r / r_c)**2)**(-3 * beta + 0.5) super(BetaModel, self).__init__(ra0, dec0, func, theta=theta, ellipticity=ellipticity)
def __init__(self, emin, emax, nbins, var_elem=None, apec_root=None, apec_vers="3.0.8", broadening=True, nolines=False): emin = parse_value(emin, "keV") emax = parse_value(emax, 'keV') self.emin = emin self.emax = emax self.nbins = nbins self.ebins = np.linspace(self.emin, self.emax, nbins+1) self.de = np.diff(self.ebins) self.emid = 0.5*(self.ebins[1:]+self.ebins[:-1]) if apec_root is None: apec_root = soxs_files_path self.cocofile = os.path.join(apec_root, "apec_v%s_coco.fits" % apec_vers) self.linefile = os.path.join(apec_root, "apec_v%s_line.fits" % apec_vers) if not os.path.exists(self.cocofile) or not os.path.exists(self.linefile): raise IOError("Cannot find the APEC files!\n %s\n, %s" % (self.cocofile, self.linefile)) self.nolines = nolines self.wvbins = hc/self.ebins[::-1] self.broadening = broadening try: self.line_handle = pyfits.open(self.linefile) except IOError: raise IOError("LINE file %s does not exist" % self.linefile) try: self.coco_handle = pyfits.open(self.cocofile) except IOError: raise IOError("COCO file %s does not exist" % self.cocofile) self.Tvals = self.line_handle[1].data.field("kT") self.nT = len(self.Tvals) self.dTvals = np.diff(self.Tvals) self.minlam = self.wvbins.min() self.maxlam = self.wvbins.max() if var_elem is None: self.var_elem = [] else: self.var_elem = [elem_names.index(elem) for elem in var_elem] self.var_elem.sort() self.var_elem_names = [elem_names[elem] for elem in self.var_elem] self.num_var_elem = len(self.var_elem) self.cosmic_elem = [elem for elem in cosmic_elem if elem not in self.var_elem] self.metal_elem = [elem for elem in metal_elem if elem not in self.var_elem]
def generate_sources(exp_time, fov, sky_center, area=40000.0, prng=None): r""" Make a catalog of point sources. Parameters ---------- exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The exposure time of the observation in seconds. fov : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The field of view in arcminutes. sky_center : array-like The center RA, Dec of the field of view in degrees. area : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The effective area in cm**2. It must be large enough so that a sufficiently large sample is drawn for the ARF. Default: 40000. prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. """ prng = parse_prng(prng) exp_time = parse_value(exp_time, "s") fov = parse_value(fov, "arcmin") area = parse_value(area, "cm**2") agn_fluxes, gal_fluxes = generate_fluxes(exp_time, area, fov, prng) fluxes = np.concatenate([agn_fluxes, gal_fluxes]) ind = np.concatenate([get_agn_index(np.log10(agn_fluxes)), gal_index * np.ones(gal_fluxes.size)]) dec_scal = np.fabs(np.cos(sky_center[1] * np.pi / 180)) ra_min = sky_center[0] - fov / (2.0 * 60.0 * dec_scal) dec_min = sky_center[1] - fov / (2.0 * 60.0) ra0 = prng.uniform(size=fluxes.size) * fov / (60.0 * dec_scal) + ra_min dec0 = prng.uniform(size=fluxes.size) * fov / 60.0 + dec_min return ra0, dec0, fluxes, ind
def __init__(self, ra0, dec0, fov, num_events, prng=None): fov = parse_value(fov, "arcmin") width = fov * 60.0 height = fov * 60.0 super(FillFOVModel, self).__init__(ra0, dec0, width, height, num_events, prng=prng)
def __init__(self, ra0, dec0, width, height, num_events, theta=0.0, prng=None): prng = parse_prng(prng) ra0 = parse_value(ra0, "deg") dec0 = parse_value(dec0, "deg") width = parse_value(width, "arcsec") height = parse_value(height, "arcsec") w = construct_wcs(ra0, dec0) x = prng.uniform(low=-0.5 * width, high=0.5 * width, size=num_events) y = prng.uniform(low=-0.5 * height, high=0.5 * height, size=num_events) coords = rotate_xy(theta, x, y) ra, dec = w.wcs_pix2world(coords[0, :], coords[1, :], 1) super(RectangleModel, self).__init__(ra, dec, coords[0, :], coords[1, :], w)
def new_spec_from_band(self, emin, emax): """ Create a new :class:`~soxs.spectra.Spectrum` object from a subset of an existing one defined by a particular energy band. Parameters ---------- emin : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The minimum energy of the band in keV. emax : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The maximum energy of the band in keV. """ emin = parse_value(emin, "keV") emax = parse_value(emax, 'keV') band = np.logical_and(self.ebins.value >= emin, self.ebins.value <= emax) idxs = np.where(band)[0] ebins = self.ebins.value[idxs] flux = self.flux.value[idxs[:-1]] return Spectrum(ebins, flux)
def __init__(self, ra0, dec0, func, num_events, theta=0.0, ellipticity=1.0, prng=None): prng = parse_prng(prng) ra0 = parse_value(ra0, "deg") dec0 = parse_value(dec0, "deg") theta = parse_value(theta, "deg") x, y = generate_radial_events(num_events, func, prng, ellipticity=ellipticity) w = construct_wcs(ra0, dec0) coords = rotate_xy(theta, x, y) ra, dec = w.wcs_pix2world(coords[0, :], coords[1, :], 1) super(RadialFunctionModel, self).__init__(ra, dec, coords[0, :], coords[1, :], w)
def from_constant(cls, const_flux, emin, emax, nbins): """ Create a spectrum from a constant model using XSPEC. Parameters ---------- const_flux : float The value of the constant flux in the units of the spectrum. emin : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The minimum energy of the spectrum in keV. emax : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The maximum energy of the spectrum in keV. nbins : integer The number of bins in the spectrum. """ emin = parse_value(emin, "keV") emax = parse_value(emax, 'keV') ebins = np.linspace(emin, emax, nbins+1) flux = const_flux*np.ones(nbins) return cls(ebins, flux)
def make_simple_instrument(base_inst, new_inst, fov, num_pixels, no_bkgnd=False, no_psf=False, no_dither=False): """ Using an existing imaging instrument specification, make a simple square instrument given a field of view and a resolution. Parameters ---------- base_inst : string The name for the instrument specification to base the new one on. new_inst : string The name for the new instrument specification. fov : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The field of view in arcminutes. num_pixels : integer The number of pixels on a side. no_bkgnd : boolean, optional Set this new instrument to have no particle background. Default: False no_psf : boolean, optional Set this new instrument to have no spatial PSF. Default: False no_dither : boolean, optional Set this new instrument to have no dithering. Default: False """ sq_inst = get_instrument_from_registry(base_inst) if sq_inst["imaging"] is False: raise RuntimeError("make_simple_instrument only works with " "imaging instruments!") sq_inst["name"] = new_inst sq_inst["chips"] = None sq_inst["fov"] = parse_value(fov, "arcmin") sq_inst["num_pixels"] = num_pixels if no_bkgnd: sq_inst["bkgnd"] = None elif base_inst.startswith("aciss"): # Special-case ACIS-S to use the BI background on S3 sq_inst["bkgnd"] = "aciss" if no_psf: sq_inst["psf"] = None if sq_inst["dither"]: sq_inst["dither"] = not no_dither add_instrument_to_registry(sq_inst)
def get_flux_in_band(self, emin, emax): """ Determine the total flux within a band specified by an energy range. Parameters ---------- emin : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The minimum energy in the band, in keV. emax : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The maximum energy in the band, in keV. Returns ------- A tuple of values for the flux/intensity in the band: the first value is in terms of the photon rate, the second value is in terms of the energy rate. """ emin = parse_value(emin, "keV") emax = parse_value(emax, "keV") range = np.logical_and(self.emid.value >= emin, self.emid.value <= emax) pflux = self.flux[range].sum()*self.de eflux = (self.flux*self.emid.to("erg"))[range].sum()*self.de/(1.0*u.photon) return pflux, eflux
def convolve_spectrum(self, cspec, exp_time, prng=None): prng = parse_prng(prng) exp_time = parse_value(exp_time, "s") counts = cspec.flux.value * exp_time * cspec.de.value spec = np.histogram(cspec.emid.value, self.ebins, weights=counts)[0] conv_spec = np.zeros(self.n_ch) pbar = tqdm(leave=True, total=self.n_e, desc="Convolving spectrum ") for k in range(self.n_e): f_chan = ensure_numpy_array(np.nan_to_num(self.data["F_CHAN"][k])) n_chan = ensure_numpy_array(np.nan_to_num(self.data["N_CHAN"][k])) mat = np.nan_to_num(np.float64(self.data["MATRIX"][k])) for f, n in zip(f_chan, n_chan): mat_size = min(n, self.n_ch-f) conv_spec[f:f+n] += spec[k]*mat[:mat_size] pbar.update() pbar.close() return prng.poisson(lam=conv_spec)
def from_spectrum(cls, spec, fov): """ Create a background spectrum from a regular :class:`~soxs.spectra.Spectrum` object and the width of a field of view on a side. Parameters ---------- spec : :class:`~soxs.spectra.Spectrum` The spectrum to be used. fov : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The width of the field of view on a side in arcminutes. """ fov = parse_value(fov, "arcmin") flux = spec.flux.value/fov/fov return cls(spec.flux.ebins.value, flux)
def simulate_spectrum(spec, instrument, exp_time, out_file, instr_bkgnd=False, foreground=False, ptsrc_bkgnd=False, bkgnd_area=None, absorb_model="wabs", nH=0.05, overwrite=False, prng=None): """ Generate a PI or PHA spectrum from a :class:`~soxs.spectra.Spectrum` by convolving it with responses. To be used if one wants to create a spectrum without worrying about spatial response. Similar to XSPEC's "fakeit". Parameters ---------- spec : :class:`~soxs.spectra.Spectrum` The spectrum to be convolved. If None is supplied, only backgrounds will be simulated (if they are turned on). instrument : string The name of the instrument to use, which picks an instrument specification from the instrument registry. exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The exposure time in seconds. out_file : string The file to write the spectrum to. instr_bkgnd : boolean, optional Whether or not to include the instrumental/particle background. Default: False foreground : boolean, optional Whether or not to include the local foreground. Default: False ptsrc_bkgnd : boolean, optional Whether or not to include the unresolved point-source background. Default: False bkgnd_area : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The area on the sky for the background components, in square arcminutes. Default: None, necessary to specify if any of the background components are turned on. absorb_model : string, optional The absorption model to use, "wabs" or "tbabs". Default: "wabs" nH : float, optional The hydrogen column in units of 10**22 atoms/cm**2. Default: 0.05 overwrite : boolean, optional Whether or not to overwrite an existing file. Default: False prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. Examples -------- >>> spec = soxs.Spectrum.from_file("my_spectrum.txt") >>> soxs.simulate_spectrum(spec, "lynx_lxm", 100000.0, ... "my_spec.pi", overwrite=True) """ from soxs.events import _write_spectrum from soxs.instrument import RedistributionMatrixFile, \ AuxiliaryResponseFile from soxs.spectra import ConvolvedSpectrum from soxs.background.foreground import hm_astro_bkgnd from soxs.background.instrument import instrument_backgrounds from soxs.background.spectra import BackgroundSpectrum, \ ConvolvedBackgroundSpectrum prng = parse_prng(prng) exp_time = parse_value(exp_time, "s") try: instrument_spec = instrument_registry[instrument] except KeyError: raise KeyError("Instrument %s is not in the instrument registry!" % instrument) if foreground or instr_bkgnd or ptsrc_bkgnd: if instrument_spec["grating"]: raise NotImplementedError("Backgrounds cannot be included in simulations " "of gratings spectra at this time!") if bkgnd_area is None: raise RuntimeError("The 'bkgnd_area' argument must be set if one wants " "to simulate backgrounds! Specify a value in square " "arcminutes.") bkgnd_area = np.sqrt(parse_value(bkgnd_area, "arcmin**2")) elif spec is None: raise RuntimeError("You have specified no source spectrum and no backgrounds!") arf_file = get_response_path(instrument_spec["arf"]) rmf_file = get_response_path(instrument_spec["rmf"]) arf = AuxiliaryResponseFile(arf_file) rmf = RedistributionMatrixFile(rmf_file) event_params = {} event_params["RESPFILE"] = os.path.split(rmf.filename)[-1] event_params["ANCRFILE"] = os.path.split(arf.filename)[-1] event_params["TELESCOP"] = rmf.header["TELESCOP"] event_params["INSTRUME"] = rmf.header["INSTRUME"] event_params["MISSION"] = rmf.header.get("MISSION", "") out_spec = np.zeros(rmf.n_ch) if spec is not None: cspec = ConvolvedSpectrum(spec, arf) out_spec += rmf.convolve_spectrum(cspec, exp_time, prng=prng) fov = None if bkgnd_area is None else np.sqrt(bkgnd_area) if foreground: mylog.info("Adding in astrophysical foreground.") cspec_frgnd = ConvolvedSpectrum(hm_astro_bkgnd.to_spectrum(fov), arf) out_spec += rmf.convolve_spectrum(cspec_frgnd, exp_time, prng=prng) if instr_bkgnd and instrument_spec["bkgnd"] is not None: mylog.info("Adding in instrumental background.") instr_spec = instrument_backgrounds[instrument_spec["bkgnd"]] cspec_instr = instr_spec.to_scaled_spectrum(fov, instrument_spec["focal_length"]) out_spec += rmf.convolve_spectrum(cspec_instr, exp_time, prng=prng) if ptsrc_bkgnd: mylog.info("Adding in background from unresolved point-sources.") spec_plaw = BackgroundSpectrum.from_powerlaw(1.45, 0.0, 2.0e-7, emin=0.01, emax=10.0, nbins=300000) spec_plaw.apply_foreground_absorption(nH, model=absorb_model) cspec_plaw = ConvolvedBackgroundSpectrum(spec_plaw.to_spectrum(fov), arf) out_spec += rmf.convolve_spectrum(cspec_plaw, exp_time, prng=prng) bins = (np.arange(rmf.n_ch)+rmf.cmin).astype("int32") _write_spectrum(bins, out_spec, exp_time, rmf.header["CHANTYPE"], event_params, out_file, overwrite=overwrite)
def make_background(exp_time, instrument, sky_center, foreground=True, ptsrc_bkgnd=True, instr_bkgnd=True, no_dither=False, dither_params=None, roll_angle=0.0, subpixel_res=False, input_sources=None, absorb_model="wabs", nH=0.05, prng=None): """ Make background events. Parameters ---------- exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The exposure time to use, in seconds. instrument : string The name of the instrument to use, which picks an instrument specification from the instrument registry. sky_center : array, tuple, or list The center RA, Dec coordinates of the observation, in degrees. foreground : boolean, optional Whether or not to include the Galactic foreground. Default: True instr_bkgnd : boolean, optional Whether or not to include the instrumental background. Default: True no_dither : boolean, optional If True, turn off dithering entirely. Default: False dither_params : array-like of floats, optional The parameters to use to control the size and period of the dither pattern. The first two numbers are the dither amplitude in x and y detector coordinates in arcseconds, and the second two numbers are the dither period in x and y detector coordinates in seconds. Default: [8.0, 8.0, 1000.0, 707.0]. ptsrc_bkgnd : boolean, optional Whether or not to include the point-source background. Default: True Default: 0.05 roll_angle : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The roll angle of the observation in degrees. Default: 0.0 subpixel_res: boolean, optional If True, event positions are not randomized within the pixels within which they are detected. Default: False input_sources : string, optional If set to a filename, input the point source positions, fluxes, and spectral indices from an ASCII table instead of generating them. Default: None absorb_model : string, optional The absorption model to use, "wabs" or "tbabs". Default: "wabs" nH : float, optional The hydrogen column in units of 10**22 atoms/cm**2. Default: 0.05 prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. """ from soxs.background import make_instrument_background, \ make_foreground, make_ptsrc_background prng = parse_prng(prng) exp_time = parse_value(exp_time, "s") roll_angle = parse_value(roll_angle, "deg") try: instrument_spec = instrument_registry[instrument] except KeyError: raise KeyError("Instrument %s is not in the instrument registry!" % instrument) if not instrument_spec["imaging"]: raise RuntimeError("Instrument '%s' is not " % instrument_spec["name"] + "designed for imaging observations!") fov = instrument_spec["fov"] input_events = defaultdict(list) arf_file = get_response_path(instrument_spec["arf"]) arf = AuxiliaryResponseFile(arf_file) rmf_file = get_response_path(instrument_spec["rmf"]) rmf = RedistributionMatrixFile(rmf_file) if ptsrc_bkgnd: mylog.info("Adding in point-source background.") ptsrc_events = make_ptsrc_background(exp_time, fov, sky_center, area=1.2*arf.max_area, input_sources=input_sources, absorb_model=absorb_model, nH=nH, prng=prng) for key in ["ra", "dec", "energy"]: input_events[key].append(ptsrc_events[key]) input_events["flux"].append(ptsrc_events["flux"]) input_events["emin"].append(ptsrc_events["energy"].min()) input_events["emax"].append(ptsrc_events["energy"].max()) input_events["sources"].append("ptsrc_bkgnd") events, event_params = generate_events(input_events, exp_time, instrument, sky_center, no_dither=no_dither, dither_params=dither_params, roll_angle=roll_angle, subpixel_res=subpixel_res, prng=prng) mylog.info("Generated %d photons from the point-source background." % len(events["energy"])) else: nx = instrument_spec["num_pixels"] events = defaultdict(list) if not instrument_spec["dither"]: dither_on = False else: dither_on = not no_dither if dither_params is None: dither_params = [8.0, 8.0, 1000.0, 707.0] dither_dict = {"x_amp": dither_params[0], "y_amp": dither_params[1], "x_period": dither_params[2], "y_period": dither_params[3], "dither_on": dither_on, "plate_scale": instrument_spec["fov"]/nx*60.0} event_params = {"exposure_time": exp_time, "fov": instrument_spec["fov"], "num_pixels": nx, "pix_center": np.array([0.5*(2*nx+1)]*2), "channel_type": rmf.header["CHANTYPE"], "sky_center": sky_center, "dither_params": dither_dict, "plate_scale": instrument_spec["fov"]/nx/60.0, "chan_lim": [rmf.cmin, rmf.cmax], "rmf": rmf_file, "arf": arf_file, "telescope": rmf.header["TELESCOP"], "instrument": instrument_spec['name'], "mission": rmf.header.get("MISSION", ""), "nchan": rmf.n_ch, "roll_angle": roll_angle, "aimpt_coords": instrument_spec["aimpt_coords"]} if "chips" not in event_params: event_params["chips"] = instrument_spec["chips"] if foreground: mylog.info("Adding in astrophysical foreground.") bkg_events = make_foreground(event_params, arf, rmf, prng=prng) for key in bkg_events: events[key] = np.concatenate([events[key], bkg_events[key]]) if instr_bkgnd and instrument_spec["bkgnd"] is not None: mylog.info("Adding in instrumental background.") bkg_events = make_instrument_background(instrument_spec["bkgnd"], event_params, rmf, prng=prng) for key in bkg_events: events[key] = np.concatenate([events[key], bkg_events[key]]) return events, event_params
def __init__(self, emin, emax, nbins, var_elem=None, apec_root=None, apec_vers=None, broadening=True, nolines=False, abund_table=None, nei=False): if apec_vers is None: filedir = os.path.join(os.path.dirname(__file__), 'files') cfile = glob.glob("%s/apec_*_coco.fits" % filedir)[0] apec_vers = cfile.split("/")[-1].split("_")[1][1:] mylog.info("Using APEC version %s." % apec_vers) if nei and apec_root is None: raise RuntimeError("The NEI APEC tables are not supplied with " "SOXS! Download them from http://www.atomdb.org " "and set 'apec_root' to their location.") if nei and var_elem is None: raise RuntimeError("For NEI spectra, you must specify which elements " "you want to vary using the 'var_elem' argument!") self.nei = nei emin = parse_value(emin, "keV") emax = parse_value(emax, 'keV') self.emin = emin self.emax = emax self.nbins = nbins self.ebins = np.linspace(self.emin, self.emax, nbins+1) self.de = np.diff(self.ebins) self.emid = 0.5*(self.ebins[1:]+self.ebins[:-1]) if apec_root is None: apec_root = soxs_files_path if nei: neistr = "_nei" ftype = "comp" else: neistr = "" ftype = "coco" self.cocofile = os.path.join(apec_root, "apec_v%s%s_%s.fits" % (apec_vers, neistr, ftype)) self.linefile = os.path.join(apec_root, "apec_v%s%s_line.fits" % (apec_vers, neistr)) if not os.path.exists(self.cocofile) or not os.path.exists(self.linefile): raise IOError("Cannot find the APEC files!\n %s\n, %s" % (self.cocofile, self.linefile)) mylog.info("Using %s for generating spectral lines." % os.path.split(self.linefile)[-1]) mylog.info("Using %s for generating the continuum." % os.path.split(self.cocofile)[-1]) self.nolines = nolines self.wvbins = hc/self.ebins[::-1] self.broadening = broadening try: self.line_handle = pyfits.open(self.linefile) except IOError: raise IOError("Line file %s does not exist" % self.linefile) try: self.coco_handle = pyfits.open(self.cocofile) except IOError: raise IOError("Continuum file %s does not exist" % self.cocofile) self.Tvals = self.line_handle[1].data.field("kT") self.nT = len(self.Tvals) self.dTvals = np.diff(self.Tvals) self.minlam = self.wvbins.min() self.maxlam = self.wvbins.max() self.var_elem_names = [] self.var_ion_names = [] if var_elem is None: self.var_elem = np.empty((0,1), dtype='int') else: self.var_elem = [] if len(var_elem) != len(set(var_elem)): raise RuntimeError("Duplicates were found in the \"var_elem\" list! %s" % var_elem) for elem in var_elem: if "^" in elem: if not self.nei: raise RuntimeError("Cannot use different ionization states with a " "CIE plasma!") el = elem.split("^") e = el[0] ion = int(el[1]) else: if self.nei: raise RuntimeError("Variable elements must include the ionization " "state for NEI plasmas!") e = elem ion = 0 self.var_elem.append([elem_names.index(e), ion]) self.var_elem.sort(key=lambda x: (x[0], x[1])) self.var_elem = np.array(self.var_elem, dtype='int') self.var_elem_names = [elem_names[e[0]] for e in self.var_elem] self.var_ion_names = ["%s^%d" % (elem_names[e[0]], e[1]) for e in self.var_elem] self.num_var_elem = len(self.var_elem) if self.nei: self.cosmic_elem = [elem for elem in [1, 2] if elem not in self.var_elem[:, 0]] self.metal_elem = [] else: self.cosmic_elem = [elem for elem in cosmic_elem if elem not in self.var_elem[:,0]] self.metal_elem = [elem for elem in metal_elem if elem not in self.var_elem[:,0]] if abund_table is None: abund_table = soxs_cfg.get("soxs", "abund_table") if not isinstance(abund_table, string_types): if len(abund_table) != 30: raise RuntimeError("User-supplied abundance tables " "must be 30 elements long!") self.atable = np.concatenate([[0.0], np.array(abund_table)]) else: self.atable = abund_tables[abund_table].copy() self._atable = self.atable.copy() self._atable[1:] /= abund_tables["angr"][1:]
def __init__(self, ra0, dec0, func, theta=0.0, ellipticity=1.0): super(RadialFunctionModel, self).__init__(ra0, dec0) self.theta = parse_value(theta, "deg") self.func = func self.ellipticity = ellipticity
def __init__(self, ra0, dec0, width, height, theta=0.0): super(RectangleModel, self).__init__(ra0, dec0) self.width = parse_value(width, "arcsec") self.height = parse_value(height, "arcsec") self.theta = parse_value(theta, "deg")
def __init__(self, ra0, dec0, fov): fov = parse_value(fov, "arcmin") width = fov*60.0 height = fov*60.0 super(FillFOVModel, self).__init__(ra0, dec0, width, height)
def __init__(self, ra0, dec0, r_c, beta, theta=0.0, ellipticity=1.0): r_c = parse_value(r_c, "arcsec") func = lambda r: (1.0+(r/r_c)**2)**(-3*beta+0.5) super(BetaModel, self).__init__(ra0, dec0, func, theta=theta, ellipticity=ellipticity)
def generate_events(input_events, exp_time, instrument, sky_center, no_dither=False, dither_params=None, roll_angle=0.0, subpixel_res=False, prng=None): """ Take unconvolved events and convolve them with instrumental responses. This function does the following: 1. Determines which events are observed using the ARF 2. Pixelizes the events, applying PSF effects and dithering 3. Determines energy channels using the RMF This function is not meant to be called by the end-user but is used by the :func:`~soxs.instrument.instrument_simulator` function. Parameters ---------- input_events : string, dict, or None The unconvolved events to be used as input. Can be one of the following: 1. The name of a SIMPUT catalog file. 2. A Python dictionary containing the following items: "ra": A NumPy array of right ascension values in degrees. "dec": A NumPy array of declination values in degrees. "energy": A NumPy array of energy values in keV. "flux": The flux of the entire source, in units of erg/cm**2/s. out_file : string The name of the event file to be written. exp_time : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The exposure time to use, in seconds. instrument : string The name of the instrument to use, which picks an instrument specification from the instrument registry. sky_center : array, tuple, or list The center RA, Dec coordinates of the observation, in degrees. no_dither : boolean, optional If True, turn off dithering entirely. Default: False dither_params : array-like of floats, optional The parameters to use to control the size and period of the dither pattern. The first two numbers are the dither amplitude in x and y detector coordinates in arcseconds, and the second two numbers are the dither period in x and y detector coordinates in seconds. Default: [8.0, 8.0, 1000.0, 707.0]. roll_angle : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The roll angle of the observation in degrees. Default: 0.0 subpixel_res: boolean, optional If True, event positions are not randomized within the pixels within which they are detected. Default: False prng : :class:`~numpy.random.RandomState` object, integer, or None A pseudo-random number generator. Typically will only be specified if you have a reason to generate the same set of random numbers, such as for a test. Default is None, which sets the seed based on the system time. """ import pyregion._region_filter as rfilter exp_time = parse_value(exp_time, "s") roll_angle = parse_value(roll_angle, "deg") prng = parse_prng(prng) if isinstance(input_events, dict): parameters = {} for key in ["flux", "emin", "emax", "sources"]: parameters[key] = input_events[key] event_list = [] for i in range(len(parameters["flux"])): edict = {} for key in ["ra", "dec", "energy"]: edict[key] = input_events[key][i] event_list.append(edict) elif isinstance(input_events, string_types): # Assume this is a SIMPUT catalog event_list, parameters = read_simput_catalog(input_events) try: instrument_spec = instrument_registry[instrument] except KeyError: raise KeyError("Instrument %s is not in the instrument registry!" % instrument) if not instrument_spec["imaging"]: raise RuntimeError("Instrument '%s' is not " % instrument_spec["name"] + "designed for imaging observations!") arf_file = get_response_path(instrument_spec["arf"]) rmf_file = get_response_path(instrument_spec["rmf"]) arf = AuxiliaryResponseFile(arf_file) rmf = RedistributionMatrixFile(rmf_file) nx = instrument_spec["num_pixels"] plate_scale = instrument_spec["fov"]/nx/60. # arcmin to deg plate_scale_arcsec = plate_scale * 3600.0 if not instrument_spec["dither"]: dither_on = False else: dither_on = not no_dither if dither_params is None: dither_params = [8.0, 8.0, 1000.0, 707.0] dither_dict = {"x_amp": dither_params[0], "y_amp": dither_params[1], "x_period": dither_params[2], "y_period": dither_params[3], "dither_on": dither_on, "plate_scale": plate_scale_arcsec} event_params = {} event_params["exposure_time"] = exp_time event_params["arf"] = arf.filename event_params["sky_center"] = sky_center event_params["pix_center"] = np.array([0.5*(2*nx+1)]*2) event_params["num_pixels"] = nx event_params["plate_scale"] = plate_scale event_params["rmf"] = rmf.filename event_params["channel_type"] = rmf.header["CHANTYPE"] event_params["telescope"] = rmf.header["TELESCOP"] event_params["instrument"] = instrument_spec['name'] event_params["mission"] = rmf.header.get("MISSION", "") event_params["nchan"] = rmf.n_ch event_params["roll_angle"] = roll_angle event_params["fov"] = instrument_spec["fov"] event_params["chan_lim"] = [rmf.cmin, rmf.cmax] event_params["chips"] = instrument_spec["chips"] event_params["dither_params"] = dither_dict event_params["aimpt_coords"] = instrument_spec["aimpt_coords"] w = pywcs.WCS(naxis=2) w.wcs.crval = event_params["sky_center"] w.wcs.crpix = event_params["pix_center"] w.wcs.cdelt = [-plate_scale, plate_scale] w.wcs.ctype = ["RA---TAN","DEC--TAN"] w.wcs.cunit = ["deg"]*2 rot_mat = get_rot_mat(roll_angle) all_events = defaultdict(list) for i, evts in enumerate(event_list): mylog.info("Detecting events from source %s." % parameters["sources"][i]) # Step 1: Use ARF to determine which photons are observed mylog.info("Applying energy-dependent effective area from %s." % os.path.split(arf.filename)[-1]) refband = [parameters["emin"][i], parameters["emax"][i]] events = arf.detect_events(evts, exp_time, parameters["flux"][i], refband, prng=prng) n_evt = events["energy"].size if n_evt == 0: mylog.warning("No events were observed for this source!!!") else: # Step 2: Assign pixel coordinates to events. Apply dithering and # PSF. Clip events that don't fall within the detection region. mylog.info("Pixeling events.") # Convert RA, Dec to pixel coordinates xpix, ypix = w.wcs_world2pix(events["ra"], events["dec"], 1) xpix -= event_params["pix_center"][0] ypix -= event_params["pix_center"][1] events.pop("ra") events.pop("dec") n_evt = xpix.size # Rotate physical coordinates to detector coordinates det = np.dot(rot_mat, np.array([xpix, ypix])) detx = det[0,:] + event_params["aimpt_coords"][0] dety = det[1,:] + event_params["aimpt_coords"][1] # Add times to events events['time'] = prng.uniform(size=n_evt, low=0.0, high=event_params["exposure_time"]) # Apply dithering x_offset, y_offset = perform_dither(events["time"], dither_dict) detx -= x_offset dety -= y_offset # PSF scattering of detector coordinates if instrument_spec["psf"] is not None: psf_type, psf_spec = instrument_spec["psf"] if psf_type == "gaussian": sigma = psf_spec/sigma_to_fwhm/plate_scale_arcsec detx += prng.normal(loc=0.0, scale=sigma, size=n_evt) dety += prng.normal(loc=0.0, scale=sigma, size=n_evt) else: raise NotImplementedError("PSF type %s not implemented!" % psf_type) # Convert detector coordinates to chip coordinates. # Throw out events that don't fall on any chip. cx = np.trunc(detx)+0.5*np.sign(detx) cy = np.trunc(dety)+0.5*np.sign(dety) if event_params["chips"] is None: events["chip_id"] = np.zeros(n_evt, dtype='int') keepx = np.logical_and(cx >= -0.5*nx, cx <= 0.5*nx) keepy = np.logical_and(cy >= -0.5*nx, cy <= 0.5*nx) keep = np.logical_and(keepx, keepy) else: events["chip_id"] = -np.ones(n_evt, dtype='int') for i, chip in enumerate(event_params["chips"]): thisc = np.ones(n_evt, dtype='bool') rtype = chip[0] args = chip[1:] r = getattr(rfilter, rtype)(*args) inside = r.inside(cx, cy) thisc = np.logical_and(thisc, inside) events["chip_id"][thisc] = i keep = events["chip_id"] > -1 mylog.info("%d events were rejected because " % (n_evt-keep.sum()) + "they do not fall on any CCD.") n_evt = keep.sum() if n_evt == 0: mylog.warning("No events are within the field of view for this source!!!") else: # Keep only those events which fall on a chip for key in events: events[key] = events[key][keep] # Convert chip coordinates back to detector coordinates, unless the # user has specified that they want subpixel resolution if subpixel_res: events["detx"] = detx[keep] events["dety"] = dety[keep] else: events["detx"] = cx[keep] + prng.uniform(low=-0.5, high=0.5, size=n_evt) events["dety"] = cy[keep] + prng.uniform(low=-0.5, high=0.5, size=n_evt) # Convert detector coordinates back to pixel coordinates by # adding the dither offsets back in and applying the rotation # matrix again det = np.array([events["detx"] + x_offset[keep] - event_params["aimpt_coords"][0], events["dety"] + y_offset[keep] - event_params["aimpt_coords"][1]]) pix = np.dot(rot_mat.T, det) events["xpix"] = pix[0,:] + event_params['pix_center'][0] events["ypix"] = pix[1,:] + event_params['pix_center'][1] if n_evt > 0: for key in events: all_events[key] = np.concatenate([all_events[key], events[key]]) if len(all_events["energy"]) == 0: mylog.warning("No events from any of the sources in the catalog were detected!") for key in ["xpix", "ypix", "detx", "dety", "time", "chip_id", event_params["channel_type"]]: all_events[key] = np.array([]) else: # Step 4: Scatter energies with RMF mylog.info("Scattering energies with RMF %s." % os.path.split(rmf.filename)[-1]) all_events = rmf.scatter_energies(all_events, prng=prng) return all_events, event_params
def __init__(self, ra0, dec0): self.ra0 = parse_value(ra0, "deg") self.dec0 = parse_value(dec0, "deg") self.w = construct_wcs(self.ra0, self.dec0)
def e_to_ch(self, energy): energy = parse_value(energy, "keV") return np.searchsorted(self.ebounds_data["E_MIN"], energy)-1